DunnBC22 commited on
Commit
b74b9eb
1 Parent(s): d80cf04

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -8
README.md CHANGED
@@ -10,11 +10,9 @@ metrics:
10
  model-index:
11
  - name: canine-c-Mental_Health_Classification
12
  results: []
 
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
-
18
  # canine-c-Mental_Health_Classification
19
 
20
  This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the None dataset.
@@ -27,15 +25,17 @@ It achieves the following results on the evaluation set:
27
 
28
  ## Model description
29
 
30
- More information needed
 
 
31
 
32
  ## Intended uses & limitations
33
 
34
- More information needed
35
 
36
  ## Training and evaluation data
37
 
38
- More information needed
39
 
40
  ## Training procedure
41
 
@@ -57,10 +57,9 @@ The following hyperparameters were used during training:
57
  | 0.3429 | 1.0 | 1101 | 0.2640 | 0.9037 | 0.8804 | 0.8258 | 0.9426 |
58
  | 0.1923 | 2.0 | 2202 | 0.2419 | 0.9226 | 0.9096 | 0.9079 | 0.9113 |
59
 
60
-
61
  ### Framework versions
62
 
63
  - Transformers 4.26.1
64
  - Pytorch 1.12.1
65
  - Datasets 2.8.0
66
- - Tokenizers 0.12.1
 
10
  model-index:
11
  - name: canine-c-Mental_Health_Classification
12
  results: []
13
+ pipeline_tag: text-classification
14
  ---
15
 
 
 
 
16
  # canine-c-Mental_Health_Classification
17
 
18
  This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the None dataset.
 
25
 
26
  ## Model description
27
 
28
+ This is a binary text classification model to distinguish between text that indicate potential mental health issue or not.
29
+
30
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Mental%20Health%20Classification/CANINE%20-%20Mental%20Health%20Classification.ipynb
31
 
32
  ## Intended uses & limitations
33
 
34
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
35
 
36
  ## Training and evaluation data
37
 
38
+ Dataset Source: https://www.kaggle.com/datasets/reihanenamdari/mental-health-corpus
39
 
40
  ## Training procedure
41
 
 
57
  | 0.3429 | 1.0 | 1101 | 0.2640 | 0.9037 | 0.8804 | 0.8258 | 0.9426 |
58
  | 0.1923 | 2.0 | 2202 | 0.2419 | 0.9226 | 0.9096 | 0.9079 | 0.9113 |
59
 
 
60
  ### Framework versions
61
 
62
  - Transformers 4.26.1
63
  - Pytorch 1.12.1
64
  - Datasets 2.8.0
65
+ - Tokenizers 0.12.1