DunnBC22 commited on
Commit
1801786
·
1 Parent(s): ae0691c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: codebert-base-Malicious_URLs
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # codebert-base-Malicious_URLs
15
+
16
+ This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.8225
19
+ - Accuracy: 0.7279
20
+ - Weighted f1: 0.6508
21
+ - Micro f1: 0.7279
22
+ - Macro f1: 0.4611
23
+ - Weighted recall: 0.7279
24
+ - Micro recall: 0.7279
25
+ - Macro recall: 0.4422
26
+ - Weighted precision: 0.6256
27
+ - Micro precision: 0.7279
28
+ - Macro precision: 0.5436
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 64
49
+ - eval_batch_size: 64
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 1
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
59
+ | 0.8273 | 1.0 | 6450 | 0.8225 | 0.7279 | 0.6508 | 0.7279 | 0.4611 | 0.7279 | 0.7279 | 0.4422 | 0.6256 | 0.7279 | 0.5436 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.27.4
65
+ - Pytorch 2.0.0
66
+ - Datasets 2.11.0
67
+ - Tokenizers 0.13.3