File size: 1,873 Bytes
e4813b2
 
 
 
 
 
 
 
 
af31ff2
 
 
 
5d435b6
e4813b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af31ff2
 
 
e4813b2
 
 
af31ff2
e4813b2
 
 
af31ff2
e4813b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af31ff2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: codet5-small-Generate_Docstrings_for_Python
  results: []
datasets:
- kejian/codesearchnet-python-raw
language:
- en
pipeline_tag: text2text-generation
---

# codet5-small-Generate_Docstrings_for_Python

This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4116
- Rouge1: 0.3381
- Rouge2: 0.1541
- Rougel: 0.3045
- Rougelsum: 0.3214
- Gen Len: 15.8088

## Model description

This model is trained to provide the docstring for functions.

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Generate%20Docstrings/Code_T5_Project.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: kejian/codesearchnet-python-raw (from HuggingFace Datasets; https://huggingface.co/datasets/kejian/codesearchnet-python-raw)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.7447        | 1.0   | 7913 | 2.4116          | 0.3381 | 0.1541 | 0.3045 | 0.3214    | 15.8088 |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2