DunnBC22 commited on
Commit
2d7c6f9
1 Parent(s): 42449d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -16
README.md CHANGED
@@ -6,6 +6,9 @@ datasets:
6
  - imagefolder
7
  metrics:
8
  - accuracy
 
 
 
9
  model-index:
10
  - name: efficientformer-l3-300-Brain_Tumors_Image_Classification
11
  results:
@@ -22,11 +25,11 @@ model-index:
22
  - name: Accuracy
23
  type: accuracy
24
  value: 0.7817258883248731
 
 
 
25
  ---
26
 
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
  # efficientformer-l3-300-Brain_Tumors_Image_Classification
31
 
32
  This model is a fine-tuned version of [snap-research/efficientformer-l3-300](https://huggingface.co/snap-research/efficientformer-l3-300) on the imagefolder dataset.
@@ -43,17 +46,42 @@ It achieves the following results on the evaluation set:
43
  - Micro precision: 0.7817
44
  - Macro precision: 0.8613
45
 
46
- ## Model description
47
-
48
- More information needed
49
-
50
- ## Intended uses & limitations
51
-
52
- More information needed
53
-
54
- ## Training and evaluation data
55
-
56
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  ## Training procedure
59
 
@@ -76,10 +104,9 @@ The following hyperparameters were used during training:
76
  | 1.2856 | 2.0 | 360 | 2.1421 | 0.7563 | 0.7146 | 0.7563 | 0.7211 | 0.7563 | 0.7563 | 0.7471 | 0.8381 | 0.7563 | 0.8551 |
77
  | 0.1405 | 3.0 | 540 | 2.2761 | 0.7817 | 0.7381 | 0.7817 | 0.7465 | 0.7817 | 0.7817 | 0.7771 | 0.8442 | 0.7817 | 0.8613 |
78
 
79
-
80
  ### Framework versions
81
 
82
  - Transformers 4.28.1
83
  - Pytorch 2.0.0
84
  - Datasets 2.11.0
85
- - Tokenizers 0.13.3
 
6
  - imagefolder
7
  metrics:
8
  - accuracy
9
+ - f1
10
+ - recall
11
+ - precision
12
  model-index:
13
  - name: efficientformer-l3-300-Brain_Tumors_Image_Classification
14
  results:
 
25
  - name: Accuracy
26
  type: accuracy
27
  value: 0.7817258883248731
28
+ language:
29
+ - en
30
+ pipeline_tag: image-classification
31
  ---
32
 
 
 
 
33
  # efficientformer-l3-300-Brain_Tumors_Image_Classification
34
 
35
  This model is a fine-tuned version of [snap-research/efficientformer-l3-300](https://huggingface.co/snap-research/efficientformer-l3-300) on the imagefolder dataset.
 
46
  - Micro precision: 0.7817
47
  - Macro precision: 0.8613
48
 
49
+ <div style="text-align: center;">
50
+ <h2>
51
+ Model Description
52
+ </h2>
53
+ <a href="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/EfficientFormer-%20Image%20Classification.ipynb">
54
+ Click here for the code that I used to create this model
55
+ </a>
56
+ This project is part of a comparison of seventeen (17) transformers.
57
+ <a href="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/README.md">
58
+ Click here to see the README markdown file for the full project
59
+ </a>
60
+ <h2>
61
+ Intended Uses & Limitations
62
+ </h2>
63
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
64
+
65
+
66
+ <h2>
67
+ Training & Evaluation Data
68
+ </h2>
69
+ <a href="https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri">
70
+ Brain Tumor Image Classification Dataset
71
+ </a>
72
+ <h2>
73
+ Sample Images
74
+ </h2>
75
+ <img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Sample%20Images.png" />
76
+ <h2>
77
+ Class Distribution of Training Dataset
78
+ </h2>
79
+ <img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Class%20Distribution%20-%20Training%20Dataset.png"/>
80
+ <h2>
81
+ Class Distribution of Evaluation Dataset
82
+ </h2>
83
+ <img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Class%20Distribution%20-%20Testing%20Dataset.png"/>
84
+ </div>
85
 
86
  ## Training procedure
87
 
 
104
  | 1.2856 | 2.0 | 360 | 2.1421 | 0.7563 | 0.7146 | 0.7563 | 0.7211 | 0.7563 | 0.7563 | 0.7471 | 0.8381 | 0.7563 | 0.8551 |
105
  | 0.1405 | 3.0 | 540 | 2.2761 | 0.7817 | 0.7381 | 0.7817 | 0.7465 | 0.7817 | 0.7817 | 0.7771 | 0.8442 | 0.7817 | 0.8613 |
106
 
 
107
  ### Framework versions
108
 
109
  - Transformers 4.28.1
110
  - Pytorch 2.0.0
111
  - Datasets 2.11.0
112
+ - Tokenizers 0.13.3