--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: efficientformer-l3-300-Brain_Tumors_Image_Classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7817258883248731 language: - en pipeline_tag: image-classification ---

efficientformer-l3-300-Brain_Tumors_Image_Classification

This model is a fine-tuned version of [snap-research/efficientformer-l3-300](https://huggingface.co/snap-research/efficientformer-l3-300). It achieves the following results on the evaluation set: - Loss: 2.2761 - Accuracy: 0.7817 - F1 - Weighted: 0.7381 - Micro: 0.7817 - Macro: 0.7465 - Recall - Weighted: 0.7817 - Micro: 0.7817 - Macro: 0.7771 - Precision - Weighted: 0.8442 - Micro: 0.7817 - Macro: 0.8613

Model Description

Click here for the code that I used to create this model This project is part of a comparison of seventeen (17) transformers. Click here to see the README markdown file for the full project

Intended Uses & Limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training & Evaluation Data

Brain Tumor Image Classification Dataset

Sample Images

Class Distribution of Training Dataset

Class Distribution of Evaluation Dataset

## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.2856 | 1.0 | 180 | 1.4677 | 0.7284 | 0.6798 | 0.7284 | 0.6829 | 0.7284 | 0.7284 | 0.7133 | 0.8156 | 0.7284 | 0.8350 | | 1.2856 | 2.0 | 360 | 2.1421 | 0.7563 | 0.7146 | 0.7563 | 0.7211 | 0.7563 | 0.7563 | 0.7471 | 0.8381 | 0.7563 | 0.8551 | | 0.1405 | 3.0 | 540 | 2.2761 | 0.7817 | 0.7381 | 0.7817 | 0.7465 | 0.7817 | 0.7817 | 0.7771 | 0.8442 | 0.7817 | 0.8613 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3