--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-base-16384-text_summarization_data results: [] language: - en pipeline_tag: summarization --- # led-base-16384-text_summarization_data This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9531 - Rouge1: 43.3689 - Rouge2: 19.9885 - Rougel: 39.9887 - Rougelsum: 40.0679 - Gen Len: 14.0392 ## Model description This is a text summarization model. For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Text%20Summarization/Text-Summarized%20Data%20-%20Comparison/LED%20-%20Text%20Summarization%20-%204%20Epochs.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/cuitengfeui/textsummarization-data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.329 | 1.0 | 1197 | 0.9704 | 42.4111 | 19.8995 | 39.4717 | 39.5449 | 14.254 | | 0.8367 | 2.0 | 2394 | 0.9425 | 43.1141 | 19.6089 | 39.7533 | 39.8298 | 14.1058 | | 0.735 | 3.0 | 3591 | 0.9421 | 42.8101 | 19.8281 | 39.617 | 39.6751 | 13.7101 | | 0.6737 | 4.0 | 4788 | 0.9531 | 43.3689 | 19.9885 | 39.9887 | 40.0679 | 14.0392 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.12.1