--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: regnet-y-064-Brain_Tumors_Image_Classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8045685279187818 ---

regnet-y-064-Brain_Tumors_Image_Classification

This model is a fine-tuned version of [facebook/regnet-y-064](https://huggingface.co/facebook/regnet-y-064). It achieves the following results on the evaluation set: - Loss: 1.1561 - Accuracy: 0.8046 - Weighted f1: 0.7776 - Micro f1: 0.8046 - Macro f1: 0.7839 - Weighted recall: 0.8046 - Micro recall: 0.8046 - Macro recall: 0.7978 - Weighted precision: 0.8574 - Micro precision: 0.8046 - Macro precision: 0.8736

Model Description

Click here for the code that I used to create this model. This project is part of a comparison of seventeen (17) transformers. Click here to see the README markdown file for the full project.

Intended Uses & Limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training & Evaluation Data

Brain Tumor Image Classification Dataset

Sample Images

Class Distribution of Training Dataset

Class Distribution of Evaluation Dataset

## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.288 | 1.0 | 180 | 1.3796 | 0.6548 | 0.5991 | 0.6548 | 0.5868 | 0.6548 | 0.6548 | 0.6176 | 0.8046 | 0.6548 | 0.8285 | | 1.288 | 2.0 | 360 | 1.0964 | 0.7944 | 0.7687 | 0.7944 | 0.7755 | 0.7944 | 0.7944 | 0.7872 | 0.8555 | 0.7944 | 0.8727 | | 0.1498 | 3.0 | 540 | 1.1561 | 0.8046 | 0.7776 | 0.8046 | 0.7839 | 0.8046 | 0.8046 | 0.7978 | 0.8574 | 0.8046 | 0.8736 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3