update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- token-classification
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: roberta-base-finetuned-WikiNeural
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# roberta-base-finetuned-WikiNeural
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0871
|
19 |
+
- Loc: {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955}
|
20 |
+
- Misc: {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061}
|
21 |
+
- Org: {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449}
|
22 |
+
- Per: {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210}
|
23 |
+
- Overall Precision: 0.9124
|
24 |
+
- Overall Recall: 0.9352
|
25 |
+
- Overall F1: 0.9237
|
26 |
+
- Overall Accuracy: 0.9910
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 2
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 0.1086 | 1.0 | 5795 | 0.1001 | {'precision': 0.9148971193415638, 'recall': 0.9333333333333333, 'f1': 0.9240232751454697, 'number': 5955} | {'precision': 0.8157800785433774, 'recall': 0.9029836000790358, 'f1': 0.8571696520678983, 'number': 5061} | {'precision': 0.9133903133903134, 'recall': 0.9295447955929255, 'f1': 0.9213967524069551, 'number': 3449} | {'precision': 0.9642018779342723, 'recall': 0.9460652591170825, 'f1': 0.9550474714202672, 'number': 5210} | 0.8997 | 0.9282 | 0.9137 | 0.9896 |
|
58 |
+
| 0.0727 | 2.0 | 11590 | 0.0871 | {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955} | {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061} | {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449} | {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210} | 0.9124 | 0.9352 | 0.9237 | 0.9910 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.28.1
|
64 |
+
- Pytorch 2.0.1
|
65 |
+
- Datasets 2.13.0
|
66 |
+
- Tokenizers 0.13.3
|