DunnBC22 commited on
Commit
2c7b2d0
·
1 Parent(s): 853a167

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - token-classification
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: roberta-base-finetuned-WikiNeural
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # roberta-base-finetuned-WikiNeural
15
+
16
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0871
19
+ - Loc: {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955}
20
+ - Misc: {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061}
21
+ - Org: {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449}
22
+ - Per: {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210}
23
+ - Overall Precision: 0.9124
24
+ - Overall Recall: 0.9352
25
+ - Overall F1: 0.9237
26
+ - Overall Accuracy: 0.9910
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 2
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 0.1086 | 1.0 | 5795 | 0.1001 | {'precision': 0.9148971193415638, 'recall': 0.9333333333333333, 'f1': 0.9240232751454697, 'number': 5955} | {'precision': 0.8157800785433774, 'recall': 0.9029836000790358, 'f1': 0.8571696520678983, 'number': 5061} | {'precision': 0.9133903133903134, 'recall': 0.9295447955929255, 'f1': 0.9213967524069551, 'number': 3449} | {'precision': 0.9642018779342723, 'recall': 0.9460652591170825, 'f1': 0.9550474714202672, 'number': 5210} | 0.8997 | 0.9282 | 0.9137 | 0.9896 |
58
+ | 0.0727 | 2.0 | 11590 | 0.0871 | {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955} | {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061} | {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449} | {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210} | 0.9124 | 0.9352 | 0.9237 | 0.9910 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.28.1
64
+ - Pytorch 2.0.1
65
+ - Datasets 2.13.0
66
+ - Tokenizers 0.13.3