File size: 1,697 Bytes
f8584da
 
 
 
 
 
817b858
 
 
 
 
f8584da
 
 
 
 
 
 
 
 
 
 
817b858
 
 
f8584da
 
 
817b858
f8584da
 
 
817b858
f8584da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
817b858
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
tags:
- generated_from_trainer
model-index:
- name: trocr-base-printed_license_plates_ocr
  results: []
language:
- en
metrics:
- cer
pipeline_tag: image-to-text
---

# trocr-base-printed_license_plates_ocr

This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1581
- Cer: 0.0368

## Model description

This model extracts text from image input (License Plates).

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Optical%20Character%20Recognition%20(OCR)/OCR%20License%20Plates/OCR_license_plate_text_recognition.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/nickyazdani/license-plate-text-recognition-dataset

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3144        | 1.0   | 2000 | 0.2463          | 0.0473 |
| 0.143         | 2.0   | 4000 | 0.1581          | 0.0368 |


### Framework versions

- Transformers 4.21.3
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1