--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_GI_diagnosis results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9375 language: - en pipeline_tag: image-classification --- # vit-base-patch16-224-in21k_GI_diagnosis This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). It achieves the following results on the evaluation set: - Loss: 0.2538 - Accuracy: 0.9375 - Weighted f1: 0.9365 - Micro f1: 0.9375 - Macro f1: 0.9365 - Weighted recall: 0.9375 - Micro recall: 0.9375 - Macro recall: 0.9375 - Weighted precision: 0.9455 - Micro precision: 0.9375 - Macro precision: 0.9455 ## Model description This is a multiclass image classification model of GI diagnosis'. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Diagnoses%20from%20Colonoscopy%20Images/diagnosis_from_colonoscopy_image_ViT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/francismon/curated-colon-dataset-for-deep-learning ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.3805 | 1.0 | 200 | 0.5006 | 0.8638 | 0.8531 | 0.8638 | 0.8531 | 0.8638 | 0.8638 | 0.8638 | 0.9111 | 0.8638 | 0.9111 | | 1.3805 | 2.0 | 400 | 0.2538 | 0.9375 | 0.9365 | 0.9375 | 0.9365 | 0.9375 | 0.9375 | 0.9375 | 0.9455 | 0.9375 | 0.9455 | | 0.0628 | 3.0 | 600 | 0.5797 | 0.8812 | 0.8740 | 0.8812 | 0.8740 | 0.8812 | 0.8812 | 0.8813 | 0.9157 | 0.8812 | 0.9157 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.12.1