DunnBC22 commited on
Commit
c21abfd
1 Parent(s): 4b9cc32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -8
README.md CHANGED
@@ -3,29 +3,35 @@ license: apache-2.0
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: yolos-small-Abdomen_MRI
8
  results: []
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  # yolos-small-Abdomen_MRI
15
 
16
- This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on an unknown dataset.
17
 
18
  ## Model description
19
 
20
- More information needed
21
 
22
  ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
  ## Training and evaluation data
27
 
28
- More information needed
29
 
30
  ## Training procedure
31
 
@@ -43,10 +49,25 @@ The following hyperparameters were used during training:
43
  ### Training results
44
 
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  ### Framework versions
48
 
49
  - Transformers 4.31.0
50
  - Pytorch 2.0.1+cu118
51
  - Datasets 2.14.1
52
- - Tokenizers 0.13.3
 
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
6
+ - medical
7
+ - biology
8
  model-index:
9
  - name: yolos-small-Abdomen_MRI
10
  results: []
11
+ datasets:
12
+ - Francesco/abdomen-mri
13
+ language:
14
+ - en
15
+ metrics:
16
+ - mean_iou
17
+ pipeline_tag: object-detection
18
  ---
19
 
 
 
 
20
  # yolos-small-Abdomen_MRI
21
 
22
+ This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small).
23
 
24
  ## Model description
25
 
26
+ https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Abdomen%20MRIs%20Object%20Detection/Abdomen_MRI_Object_Detection_YOLOS.ipynb
27
 
28
  ## Intended uses & limitations
29
 
30
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
31
 
32
  ## Training and evaluation data
33
 
34
+ Dataset Source: https://huggingface.co/datasets/Francesco/abdomen-mri
35
 
36
  ## Training procedure
37
 
 
49
  ### Training results
50
 
51
 
52
+ | Metric Name | IoU | Area | maxDets | Value |
53
+ |:-----:|:-----:|:-----:|:-----:|:-----:|
54
+ | Average Precision (AP) | 0.50:0.95 | all | 100 | 0.453 |
55
+ | Average Precision (AP) | 0.50 | all | 100 | 0.928 |
56
+ | Average Precision (AP) | 0.75 | all | 100 | 0.319 |
57
+ | Average Precision (AP) | 0.50:0.95 | small | 100 | -1.000 |
58
+ | Average Precision (AP) | 0.50:0.95 | medium | 100 | 0.426 |
59
+ | Average Precision (AP) | 0.50:0.95 | large | 100 | 0.457 |
60
+ | Average Recall (AR) | 0.50:0.95 | all | 1 | 0.518 |
61
+ | Average Recall (AR) | 0.50:0.95 | all | 10 | 0.645 |
62
+ | Average Recall (AR) | 0.50:0.95 | all | 100 | 0.715 |
63
+ | Average Recall (AR) | 0.50:0.95 | small | 100 | -1.000 |
64
+ | Average Recall (AR) | 0.50:0.95 | medium | 100 | 0.633 |
65
+ | Average Recall (AR) | 0.50:0.95 | large | 100 | 0.716 |
66
+
67
 
68
  ### Framework versions
69
 
70
  - Transformers 4.31.0
71
  - Pytorch 2.0.1+cu118
72
  - Datasets 2.14.1
73
+ - Tokenizers 0.13.3