File size: 2,404 Bytes
644da44 852f0a8 644da44 852f0a8 644da44 852f0a8 644da44 852f0a8 644da44 852f0a8 644da44 852f0a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: hustvl/yolos-small
tags:
- generated_from_trainer
datasets:
- forklift-object-detection
model-index:
- name: yolos-small-Forklift_Object_Detection
results: []
language:
- en
pipeline_tag: object-detection
---
# yolos-small-Forklift_Object_Detection
This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the forklift-object-detection dataset.
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/tree/main/Computer%20Vision/Object%20Detection/Forklift%20Object%20Detection
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://huggingface.co/datasets/keremberke/forklift-object-detection
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Metric Name | IoU | Area Category | maxDets | Metric Value |
|:-----:|:-----:|:-----:|:-----:|:-----:|
| Average Precision (AP) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.136 |
| Average Precision (AP) | IoU=0.50 | area= all | maxDets=100 | 0.400 |
| Average Precision (AP) | IoU=0.75 | area= all | maxDets=100 | 0.054 |
| Average Precision (AP) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.001 |
| Average Precision (AP) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.051 |
| Average Precision (AP) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.177 |
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 1 | 0.178 |
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 10 | 0.294 |
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.340 |
| Average Recall (AR) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.075 |
| Average Recall (AR) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.299 |
| Average Recall (AR) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.373 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3 |