Update README.md
Browse files
README.md
CHANGED
@@ -21,17 +21,21 @@ This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co
|
|
21 |
|
22 |
## Model description
|
23 |
|
24 |
-
|
25 |
|
26 |
**If you intend on trying this project yourself, I highly recommend using (at least) the yolos-small checkpoint.
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
30 |
-
|
31 |
|
32 |
## Training and evaluation data
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Training procedure
|
37 |
|
@@ -48,6 +52,20 @@ The following hyperparameters were used during training:
|
|
48 |
|
49 |
### Training results
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
### Framework versions
|
53 |
|
|
|
21 |
|
22 |
## Model description
|
23 |
|
24 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Brain%20Tumors/Brain_Tumor_m2pbp_Object_Detection_YOLOS.ipynb
|
25 |
|
26 |
**If you intend on trying this project yourself, I highly recommend using (at least) the yolos-small checkpoint.
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
30 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
31 |
|
32 |
## Training and evaluation data
|
33 |
|
34 |
+
Dataset Source: https://huggingface.co/datasets/Francesco/brain-tumor-m2pbp
|
35 |
+
|
36 |
+
**Example**
|
37 |
+
|
38 |
+

|
39 |
|
40 |
## Training procedure
|
41 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Metric Name | IoU | Area | maxDets | Metric Value |
|
56 |
+
|:-----:|:-----:|:-----:|:-----:|:-----:|
|
57 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.185
|
58 |
+
| Average Precision (AP) | IoU=0.50 | area= all | maxDets=100 | 0.448
|
59 |
+
| Average Precision (AP) | IoU=0.75 | area= all | maxDets=100 | 0.126
|
60 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.001
|
61 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.080
|
62 |
+
| Average Precision (AP) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.296
|
63 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 1 | 0.254
|
64 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 10 | 0.353
|
65 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.407
|
66 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.036
|
67 |
+
| Average Recall (AR) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.312
|
68 |
+
| Average Recall (AR) |IoU=0.50:0.95 | area= large | maxDets=100 | 0.565
|
69 |
|
70 |
### Framework versions
|
71 |
|