File size: 8,650 Bytes
bc20498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
// Implemented by Zoe Xi @zoexi for GSOC 2016
// https://github.com/cytoscape/cytoscape.js-affinity-propagation
// Implemented from the reference library: https://github.com/juhis/affinity-propagation
// Additional reference: http://www.psi.toronto.edu/affinitypropagation/faq.html
import * as util from '../../util';
import * as math from '../../math';
import * as is from '../../is';
import clusteringDistance from './clustering-distances';
let defaults = util.defaults({
distance: 'euclidean', // distance metric to compare attributes between two nodes
preference: 'median', // suitability of a data point to serve as an exemplar
damping: 0.8, // damping factor between [0.5, 1)
maxIterations: 1000, // max number of iterations to run
minIterations: 100, // min number of iterations to run in order for clustering to stop
attributes: [ // functions to quantify the similarity between any two points
// e.g. node => node.data('weight')
]
});
let setOptions = function( options ) {
let dmp = options.damping;
let pref = options.preference;
if( !(0.5 <= dmp && dmp < 1) ){
util.error(`Damping must range on [0.5, 1). Got: ${dmp}`);
}
let validPrefs = ['median', 'mean', 'min', 'max'];
if( !( validPrefs.some(v => v === pref) || is.number(pref) ) ){
util.error(`Preference must be one of [${validPrefs.map( p => `'${p}'` ).join(', ')}] or a number. Got: ${pref}`);
}
return defaults( options );
};
if( process.env.NODE_ENV !== 'production' ){ /* eslint-disable no-console, no-unused-vars */
var printMatrix = function( M ) { // used for debugging purposes only
let str = '';
let log = s => str = str + s + '\n';
let n = Math.sqrt(M.length);
for ( let i = 0; i < n; i++ ) {
let row = '';
for ( let j = 0; j < n; j++ ) {
row += M[i*n+j] + ' ';
}
log(row);
}
console.log(str);
};
} /* eslint-enable */
let getSimilarity = function( type, n1, n2, attributes ) {
let attr = (n, i) => attributes[i](n);
// nb negative because similarity should have an inverse relationship to distance
return -clusteringDistance( type, attributes.length, i => attr(n1, i), i => attr(n2, i), n1, n2 );
};
let getPreference = function( S, preference ) { // larger preference = greater # of clusters
let p = null;
if( preference === 'median' ){
p = math.median( S );
} else if( preference === 'mean' ){
p = math.mean( S );
} else if ( preference === 'min' ){
p = math.min( S );
} else if ( preference === 'max' ){
p = math.max( S );
} else { // Custom preference number, as set by user
p = preference;
}
return p;
};
let findExemplars = function( n, R, A ) {
let indices = [];
for ( let i = 0; i < n; i++ ) {
if ( R[i * n + i] + A[i * n + i] > 0 ) {
indices.push(i);
}
}
return indices;
};
let assignClusters = function( n, S, exemplars ) {
let clusters = [];
for ( let i = 0; i < n; i++ ) {
let index = -1;
let max = -Infinity;
for ( let ei = 0; ei < exemplars.length; ei++ ) {
let e = exemplars[ei];
if ( S[i * n + e] > max ) {
index = e;
max = S[i * n + e];
}
}
if( index > 0 ){
clusters.push(index);
}
}
for (let ei = 0; ei < exemplars.length; ei++) {
clusters[ exemplars[ei] ] = exemplars[ei];
}
return clusters;
};
let assign = function( n, S, exemplars ) {
let clusters = assignClusters( n, S, exemplars );
for ( let ei = 0; ei < exemplars.length; ei++ ) {
let ii = [];
for ( let c = 0; c < clusters.length; c++ ) {
if (clusters[c] === exemplars[ei]) {
ii.push(c);
}
}
let maxI = -1;
let maxSum = -Infinity;
for ( let i = 0; i < ii.length; i++ ) {
let sum = 0;
for ( let j = 0; j < ii.length; j++ ) {
sum += S[ii[j] * n + ii[i]];
}
if ( sum > maxSum ) {
maxI = i;
maxSum = sum;
}
}
exemplars[ei] = ii[maxI];
}
clusters = assignClusters( n, S, exemplars );
return clusters;
};
let affinityPropagation = function( options ) {
let cy = this.cy();
let nodes = this.nodes();
let opts = setOptions( options );
// Map each node to its position in node array
let id2position = {};
for( let i = 0; i < nodes.length; i++ ){
id2position[ nodes[i].id() ] = i;
}
// Begin affinity propagation algorithm
let n; // number of data points
let n2; // size of matrices
let S; // similarity matrix (1D array)
let p; // preference/suitability of a data point to serve as an exemplar
let R; // responsibility matrix (1D array)
let A; // availability matrix (1D array)
n = nodes.length;
n2 = n * n;
// Initialize and build S similarity matrix
S = new Array(n2);
for ( let i = 0; i < n2; i++ ) {
S[i] = -Infinity; // for cases where two data points shouldn't be linked together
}
for ( let i = 0; i < n; i++ ) {
for ( let j = 0; j < n; j++ ) {
if ( i !== j ) {
S[i * n + j] = getSimilarity( opts.distance, nodes[i], nodes[j], opts.attributes );
}
}
}
// Place preferences on the diagonal of S
p = getPreference( S, opts.preference );
for ( let i = 0; i < n; i++ ) {
S[i * n + i] = p;
}
// Initialize R responsibility matrix
R = new Array(n2);
for ( let i = 0; i < n2; i++ ) {
R[i] = 0.0;
}
// Initialize A availability matrix
A = new Array(n2);
for ( let i = 0; i < n2; i++ ) {
A[i] = 0.0;
}
let old = new Array(n);
let Rp = new Array(n);
let se = new Array(n);
for ( let i = 0; i < n; i ++ ) {
old[i] = 0.0;
Rp[i] = 0.0;
se[i] = 0;
}
let e = new Array(n * opts.minIterations);
for ( let i = 0; i < e.length; i++ ) {
e[i] = 0;
}
let iter;
for ( iter = 0; iter < opts.maxIterations; iter++ ) { // main algorithmic loop
// Update R responsibility matrix
for ( let i = 0; i < n; i++ ) {
let max = -Infinity,
max2 = -Infinity,
maxI = -1,
AS = 0.0;
for ( let j = 0; j < n; j++ ) {
old[j] = R[i * n + j];
AS = A[i * n + j] + S[i * n + j];
if ( AS >= max ) {
max2 = max;
max = AS;
maxI = j;
}
else if ( AS > max2 ) {
max2 = AS;
}
}
for ( let j = 0; j < n; j++ ) {
R[i * n + j] = (1 - opts.damping) * (S[i * n + j] - max) + opts.damping * old[j];
}
R[i * n + maxI] = (1 - opts.damping) * (S[i * n + maxI] - max2) + opts.damping * old[maxI];
}
// Update A availability matrix
for ( let i = 0; i < n; i++ ) {
let sum = 0;
for ( let j = 0; j < n; j++ ) {
old[j] = A[j * n + i];
Rp[j] = Math.max(0, R[j * n + i]);
sum += Rp[j];
}
sum -= Rp[i];
Rp[i] = R[i * n + i];
sum += Rp[i];
for ( let j = 0; j < n; j++ ) {
A[j * n + i] = (1 - opts.damping) * Math.min(0, sum - Rp[j]) + opts.damping * old[j];
}
A[i * n + i] = (1 - opts.damping) * (sum - Rp[i]) + opts.damping * old[i];
}
// Check for convergence
let K = 0;
for ( let i = 0; i < n; i++ ) {
let E = A[i * n + i] + R[i * n + i] > 0 ? 1 : 0;
e[(iter % opts.minIterations) * n + i] = E;
K += E;
}
if ( K > 0 && (iter >= opts.minIterations - 1 || iter == opts.maxIterations - 1) ) {
let sum = 0;
for ( let i = 0; i < n; i++ ) {
se[i] = 0;
for ( let j = 0; j < opts.minIterations; j++ ) {
se[i] += e[j * n + i];
}
if ( se[i] === 0 || se[i] === opts.minIterations ) {
sum++;
}
}
if ( sum === n ) { // then we have convergence
break;
}
}
}
// Identify exemplars (cluster centers)
let exemplarsIndices = findExemplars( n, R, A );
// Assign nodes to clusters
let clusterIndices = assign( n, S, exemplarsIndices, nodes, id2position );
let clusters = {};
for ( let c = 0; c < exemplarsIndices.length; c++ ) {
clusters[ exemplarsIndices[c] ] = [];
}
for (let i = 0; i < nodes.length; i++) {
let pos = id2position[ nodes[i].id() ];
let clusterIndex = clusterIndices[pos];
if( clusterIndex != null ){ // the node may have not been assigned a cluster if no valid attributes were specified
clusters[ clusterIndex ].push( nodes[i] );
}
}
let retClusters = new Array(exemplarsIndices.length);
for ( let c = 0; c < exemplarsIndices.length; c++ ) {
retClusters[c] = cy.collection( clusters[ exemplarsIndices[c] ] );
}
return retClusters;
};
export default { affinityPropagation, ap: affinityPropagation };
|