File size: 5,998 Bytes
bc20498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
// Implemented by Zoe Xi @zoexi for GSOC 2016
// https://github.com/cytoscape/cytoscape.js-markov-cluster
// Implemented from Stijn van Dongen's (author of MCL algorithm) documentation: http://micans.org/mcl/
// and lecture notes: https://www.cs.ucsb.edu/~xyan/classes/CS595D-2009winter/MCL_Presentation2.pdf
import * as util from '../../util';
/* eslint-disable no-unused-vars */
let defaults = util.defaults({
expandFactor: 2, // affects time of computation and cluster granularity to some extent: M * M
inflateFactor: 2, // affects cluster granularity (the greater the value, the more clusters): M(i,j) / E(j)
multFactor: 1, // optional self loops for each node. Use a neutral value to improve cluster computations.
maxIterations: 20, // maximum number of iterations of the MCL algorithm in a single run
attributes: [ // attributes/features used to group nodes, ie. similarity values between nodes
function(edge) {
return 1;
}
]
});
/* eslint-enable */
let setOptions = ( options ) => defaults( options );
/* eslint-disable no-unused-vars, no-console */
if( process.env.NODE_ENV !== 'production' ){
var printMatrix = function( M ) { // used for debugging purposes only
let n = Math.sqrt(M.length);
for ( let i = 0; i < n; i++ ) {
let row = '';
for ( let j = 0; j < n; j++ ) {
row += Number(M[i*n+j]).toFixed(3) + ' ';
}
console.log(row);
}
console.log('');
};
}
/* eslint-enable */
let getSimilarity = function( edge, attributes ) {
let total = 0;
for ( let i = 0; i < attributes.length; i++ ) {
total += attributes[i]( edge );
}
return total;
};
let addLoops = function( M, n, val ) {
for (let i = 0; i < n; i++) {
M[i * n + i] = val;
}
};
let normalize = function( M, n ) {
let sum;
for ( let col = 0; col < n; col++ ) {
sum = 0;
for ( let row = 0; row < n; row++ ) {
sum += M[row * n + col];
}
for ( let row = 0; row < n; row++ ) {
M[row * n + col] = M[row * n + col] / sum;
}
}
};
// TODO: blocked matrix multiplication?
let mmult = function( A, B, n ) {
let C = new Array( n * n );
for ( let i = 0; i < n; i++ ) {
for ( let j = 0; j < n; j++ ) {
C[i * n + j] = 0;
}
for ( let k = 0; k < n; k++ ) {
for ( let j = 0; j < n; j++ ) {
C[i * n + j] += A[i * n + k] * B[k * n + j];
}
}
}
return C;
};
let expand = function( M, n, expandFactor /** power **/ ) {
let _M = M.slice(0);
for ( let p = 1; p < expandFactor; p++ ) {
M = mmult( M, _M, n );
}
return M;
};
let inflate = function( M, n, inflateFactor /** r **/ ) {
let _M = new Array( n * n );
// M(i,j) ^ inflatePower
for ( let i = 0; i < n * n; i++ ) {
_M[i] = Math.pow( M[i], inflateFactor );
}
normalize( _M, n );
return _M;
};
let hasConverged = function( M, _M, n2, roundFactor ) {
// Check that both matrices have the same elements (i,j)
for ( let i = 0; i < n2; i++ ) {
let v1 = Math.round( M[i] * Math.pow(10, roundFactor) ) / Math.pow(10, roundFactor); // truncate to 'roundFactor' decimal places
let v2 = Math.round( _M[i] * Math.pow(10, roundFactor) ) / Math.pow(10, roundFactor);
if ( v1 !== v2 ) {
return false;
}
}
return true;
};
let assign = function( M, n, nodes, cy ) {
let clusters = [];
for ( let i = 0; i < n; i++ ) {
let cluster = [];
for ( let j = 0; j < n; j++ ) {
// Row-wise attractors and elements that they attract belong in same cluster
if ( Math.round( M[i * n + j] * 1000 ) / 1000 > 0 ) {
cluster.push( nodes[j] );
}
}
if ( cluster.length !== 0 ) {
clusters.push( cy.collection(cluster) );
}
}
return clusters;
};
let isDuplicate = function( c1, c2 ) {
for (let i = 0; i < c1.length; i++) {
if (!c2[i] || c1[i].id() !== c2[i].id()) {
return false;
}
}
return true;
};
let removeDuplicates = function( clusters ) {
for (let i = 0; i < clusters.length; i++) {
for (let j = 0; j < clusters.length; j++) {
if (i != j && isDuplicate(clusters[i], clusters[j])) {
clusters.splice(j, 1);
}
}
}
return clusters;
};
let markovClustering = function( options ) {
let nodes = this.nodes();
let edges = this.edges();
let cy = this.cy();
// Set parameters of algorithm:
let opts = setOptions( options );
// Map each node to its position in node array
let id2position = {};
for( let i = 0; i < nodes.length; i++ ){
id2position[ nodes[i].id() ] = i;
}
// Generate stochastic matrix M from input graph G (should be symmetric/undirected)
let n = nodes.length, n2 = n * n;
let M = new Array( n2 ), _M;
for ( let i = 0; i < n2; i++ ) {
M[i] = 0;
}
for ( let e = 0; e < edges.length; e++ ) {
let edge = edges[e];
let i = id2position[ edge.source().id() ];
let j = id2position[ edge.target().id() ];
let sim = getSimilarity( edge, opts.attributes );
M[i * n + j] += sim; // G should be symmetric and undirected
M[j * n + i] += sim;
}
// Begin Markov cluster algorithm
// Step 1: Add self loops to each node, ie. add multFactor to matrix diagonal
addLoops( M, n, opts.multFactor );
// Step 2: M = normalize( M );
normalize( M, n );
let isStillMoving = true;
let iterations = 0;
while ( isStillMoving && iterations < opts.maxIterations ) {
isStillMoving = false;
// Step 3:
_M = expand( M, n, opts.expandFactor );
// Step 4:
M = inflate( _M, n, opts.inflateFactor );
// Step 5: check to see if ~steady state has been reached
if ( ! hasConverged( M, _M, n2, 4 ) ) {
isStillMoving = true;
}
iterations++;
}
// Build clusters from matrix
let clusters = assign( M, n, nodes, cy );
// Remove duplicate clusters due to symmetry of graph and M matrix
clusters = removeDuplicates( clusters );
return clusters;
};
export default {
markovClustering,
mcl: markovClustering
};
|