File size: 91,139 Bytes
aeda668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 |
import itertools
import json
import logging
import os
import random
import zlib
from collections import Counter, defaultdict
from inspect import signature
from typing import BinaryIO, Iterable, List, NamedTuple, Optional, Tuple, Union
import ctranslate2
import numpy as np
import tokenizers
import torch
from pyannote.audio import Model
from tqdm import tqdm
from faster_whisper.audio import decode_audio, pad_or_trim
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
from faster_whisper.utils import (
download_model,
format_timestamp,
get_assets_path,
get_end,
get_logger,
)
from faster_whisper.vad import (
SpeechTimestampsMap,
VadOptions,
VoiceActivitySegmentation,
collect_chunks,
get_speech_timestamps,
merge_chunks,
)
class Word(NamedTuple):
start: float
end: float
word: str
probability: float
class Segment(NamedTuple):
id: int
seek: int
start: float
end: float
text: str
tokens: List[int]
avg_logprob: float
compression_ratio: float
no_speech_prob: float
words: Optional[List[Word]]
temperature: Optional[float] = 1.0
# Added additional parameters for multilingual videos and fixes below
class TranscriptionOptions(NamedTuple):
beam_size: int
best_of: int
patience: float
length_penalty: float
repetition_penalty: float
no_repeat_ngram_size: int
log_prob_threshold: Optional[float]
log_prob_low_threshold: Optional[float]
no_speech_threshold: Optional[float]
compression_ratio_threshold: Optional[float]
condition_on_previous_text: bool
prompt_reset_on_temperature: float
temperatures: List[float]
initial_prompt: Optional[Union[str, Iterable[int]]]
prefix: Optional[str]
suppress_blank: bool
suppress_tokens: Optional[List[int]]
without_timestamps: bool
max_initial_timestamp: float
word_timestamps: bool
prepend_punctuations: str
append_punctuations: str
multilingual: bool
output_language: Optional[str]
max_new_tokens: Optional[int]
clip_timestamps: Union[str, List[float]]
hallucination_silence_threshold: Optional[float]
hotwords: Optional[str]
class TranscriptionInfo(NamedTuple):
language: str
language_probability: float
duration: float
duration_after_vad: float
all_language_probs: Optional[List[Tuple[str, float]]]
transcription_options: TranscriptionOptions
vad_options: VadOptions
# The code below is originally from HF pipeline and is used in whisper-x
# (https://github.com/m-bain/whisperX) and adapted for faster_whisper
class BatchedInferencePipeline:
"""
Huggingface Pipeline wrapper for WhisperModel.
Copyright (c) 2022, Max Bain
All rights reserved.
Modified by Mobius Labs GmbH
"""
def __init__(
self,
model,
use_vad_model: bool = True,
options: Optional[NamedTuple] = None,
tokenizer=None,
chunk_length: int = 30,
vad_device: Union[int, str, "torch.device"] = "auto",
vad_onset: float = 0.500,
vad_offset: float = 0.363,
language: Optional[str] = None,
):
self.model: WhisperModel = model
self.tokenizer = tokenizer
self.options = options
self.preset_language = language
self.use_vad_model = use_vad_model
self.vad_onset = vad_onset
self.vad_offset = vad_offset
self.vad_model_path = os.path.join(get_assets_path(), "pyannote_vad_model.bin")
if self.use_vad_model:
self.vad_device = self.get_device(vad_device)
self.vad_model = self.load_vad_model(
vad_onset=self.vad_onset, vad_offset=self.vad_offset
)
else:
self.vad_model = None
self.chunk_length = chunk_length # VAD merging size
self.last_speech_timestamp = 0.0
def get_device(self, device: Union[int, str, "torch.device"]):
"""
Converts the input device into a torch.device object.
The input can be an integer, a string, or a `torch.device` object.
The function handles a special case where the input device is "auto".
When "auto" is specified, the device will default to the
device of the model (self.model.device). If the model's device is also "auto",
it selects "cuda" if a CUDA-capable device is available; otherwise, it selects "cpu".
"""
if isinstance(device, torch.device):
return device
elif isinstance(device, str):
if device == "auto" and self.model.device == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
elif device == "auto":
device = self.model.device
return torch.device(device)
elif device < 0:
return torch.device("cpu")
else:
return torch.device(f"cuda:{device}")
def forward(self, features, segments_metadata, **forward_params):
encoder_output, outputs = self.model.generate_segment_batched(
features, self.tokenizer, forward_params
)
segmented_outputs = []
segment_sizes = []
for segment_metadata, output in zip(segments_metadata, outputs):
duration = segment_metadata["end_time"] - segment_metadata["start_time"]
segment_size = int(duration * self.model.frames_per_second)
segment_sizes.append(segment_size)
(
subsegments,
seek,
single_timestamp_ending,
) = self.model._split_segments_by_timestamps(
tokenizer=self.tokenizer,
tokens=output["tokens"],
time_offset=segment_metadata["start_time"],
segment_size=segment_size,
segment_duration=duration,
seek=0,
)
segmented_outputs.append(
[
dict(
text=self.tokenizer.decode(subsegment["tokens"]),
avg_logprob=output["avg_logprob"],
no_speech_prob=output["no_speech_prob"],
tokens=subsegment["tokens"],
start=subsegment["start"],
end=subsegment["end"],
compression_ratio=get_compression_ratio(
self.tokenizer.decode(subsegment["tokens"])
),
)
for subsegment in subsegments
]
)
if forward_params["word_timestamps"]:
self.last_speech_timestamp = self.model.add_word_timestamps(
segmented_outputs,
self.tokenizer,
encoder_output,
segment_sizes,
forward_params["prepend_punctuations"],
forward_params["append_punctuations"],
self.last_speech_timestamp,
)
return segmented_outputs
def get_language_and_tokenizer(
self, audio, task: Optional[str] = None, language: Optional[str] = None
):
all_language_probs = None
language_probability = 1.0
if self.tokenizer is None:
if not language:
(
language,
language_probability,
all_language_probs,
) = self.model.detect_language(audio)
task = task or "transcribe"
self.tokenizer = Tokenizer(
self.model.hf_tokenizer,
self.model.model.is_multilingual,
task=task,
language=language,
)
else:
if task is not None:
self.tokenizer.task = self.tokenizer.tokenizer.token_to_id(
f"<|{task}|>"
)
if language is not None:
self.tokenizer.language = self.tokenizer.tokenizer.token_to_id(
f"<|{language}|>"
)
self.tokenizer.language_code = language
return language, language_probability, task, all_language_probs
@staticmethod
def audio_split(audio, segments, sampling_rate):
"""Returns splitted audio chunks as iterator"""
audio_segments = []
segments_metadata = []
for seg in segments:
f1 = int(seg["start"] * sampling_rate)
f2 = int(seg["end"] * sampling_rate)
seg_metadata = {
"start_time": seg["start"],
"end_time": seg["end"],
"stitched_seg": seg["segments"],
}
audio_segments.append(audio[f1:f2])
segments_metadata.append(seg_metadata)
return audio_segments, segments_metadata
def load_vad_model(self, vad_onset=0.500, vad_offset=0.363):
vad_model = Model.from_pretrained(self.vad_model_path)
hyperparameters = {
"onset": vad_onset,
"offset": vad_offset,
"min_duration_on": 0.1,
"min_duration_off": 0.1,
}
vad_pipeline = VoiceActivitySegmentation(
segmentation=vad_model, device=torch.device(self.vad_device)
)
vad_pipeline.instantiate(hyperparameters)
return vad_pipeline
def transcribe(
self,
audio: Union[str, torch.Tensor, np.ndarray],
vad_segments: Optional[List[dict]] = None,
batch_size: int = 16,
language: Optional[str] = None,
task: str = None,
log_progress: bool = False,
beam_size: int = 5,
best_of: int = 5,
patience: float = 1,
length_penalty: float = 1,
repetition_penalty: float = 1,
no_repeat_ngram_size: int = 0,
temperature: Union[float, List[float], Tuple[float, ...]] = [
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
],
compression_ratio_threshold: Optional[float] = 2.4,
log_prob_threshold: Optional[float] = -1.0,
log_prob_low_threshold: Optional[float] = None,
no_speech_threshold: Optional[float] = 0.6,
initial_prompt: Optional[Union[str, Iterable[int]]] = None,
prefix: Optional[str] = None,
suppress_blank: bool = True,
suppress_tokens: Optional[List[int]] = [-1],
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,,!!??::”)]}、",
max_new_tokens: Optional[int] = None,
hotwords: Optional[str] = None,
word_timestamps: bool = False,
without_timestamps: bool = True,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""transcribe audio in chunks in batched fashion and return with language info.
Arguments:
audio: audio file as numpy array/path for batched transcription.
vad_segments: Optionally provide list of dictionaries each containing "start", "end",
and "segments" keys.
"start" and "end" keys specify the start and end of the voiced region within
30 sec boundary. An additional key "segments" contains all the start
and end of voiced regions within that 30sec boundary as a list of tuples.
If no vad_segments specified, it uses internal vad model automatically segment them.
batch_size: the maximum number of parallel requests to model for decoding.
language: The language spoken in the audio.
task: either "transcribe" or "translate".
log_progress: whether to show progress bar or not.
beam_size: Beam size to use for decoding.
best_of: Number of candidates when sampling with non-zero temperature.
patience: Beam search patience factor.
length_penalty: Exponential length penalty constant.
repetition_penalty: Penalty applied to the score of previously generated tokens
(set > 1 to penalize).
no_repeat_ngram_size: Prevent repetitions of ngrams with this size (set 0 to disable).
temperature: Temperature for sampling. It can be a tuple of temperatures,
which will be successively used upon failures according to either
`compression_ratio_threshold` or `log_prob_threshold`.
compression_ratio_threshold: If the gzip compression ratio is above this value,
treat as failed.
log_prob_threshold: If the average log probability over sampled tokens is
below this value, treat as failed.
log_prob_low_threshold: This parameter alone is sufficient to skip an output text,
whereas log_prob_threshold also looks for appropriate no_speech_threshold value.
This value should be less than log_prob_threshold.
no_speech_threshold: If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
initial_prompt: Optional text string or iterable of token ids to provide as a
prompt for the first window.
prefix: Optional text to provide as a prefix for the first window.
suppress_blank: Suppress blank outputs at the beginning of the sampling.
suppress_tokens: List of token IDs to suppress. -1 will suppress a default set
of symbols as defined in `tokenizer.non_speech_tokens()`.
prepend_punctuations: If word_timestamps is True, merge these punctuation symbols
with the next word
append_punctuations: If word_timestamps is True, merge these punctuation symbols
with the previous word
max_new_tokens: Maximum number of new tokens to generate per-chunk. If not set,
the maximum will be set by the default max_length.
hotwords:
Hotwords/hint phrases to the model. Has no effect if prefix is not None.
word_timestamps: Extract word-level timestamps using the cross-attention pattern
and dynamic time warping, and include the timestamps for each word in each segment.
Set as False.
without_timestamps: Only sample text tokens.
Static params: (Fixed for batched version)
max_initial_timestamp: The initial timestamp cannot be later than this, set at 0.0.
multilingual: If True, perform transcription on multilingual videos. Set as False.
output_language: Valid only if multilingual is set to True.
Specifies the string representing the output language. One of
'en' (English) or 'hybrid' (code-switched transcription). set as None.
condition_on_previous_text: If True, the previous output of the model is provided
as a prompt for the next window; disabling may make the text inconsistent across
windows, but the model becomes less prone to getting stuck in a failure loop,
such as repetition looping or timestamps going out of sync. Set as False
prompt_reset_on_temperature: Resets prompt if temperature is above this value.
Arg has effect only if condition_on_previous_text is True. Set at 0.5
#TODO: support "hallucination_silence_threshold" when "word_timestamps=True"
hallucination_silence_threshold: Optional[float]
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected. set as None.
clip_timestamps:
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file. Set as "0".
unused:
language_detection_threshold: If the maximum probability of the language tokens is
higher than this value, the language is detected.
language_detection_segments: Number of segments to consider for the language detection.
vad_filter: Enable the voice activity detection (VAD) to filter out parts of the audio
without speech. This step is using the Silero VAD model
https://github.com/snakers4/silero-vad.
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
parameters and default values in the class `VadOptions`).
chunk_length: The length of audio segments. If it is not None, it will overwrite the
default chunk_length of the FeatureExtractor.
Returns:
A tuple with:
- a generator over transcribed batched segments.
- an instance of TranscriptionInfo.
"""
sampling_rate = self.model.feature_extractor.sampling_rate
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio)
elif not isinstance(audio, torch.Tensor):
audio = decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
# if no segment split is provided, use vad_model and generate segments
if not vad_segments:
# run the audio if it is less than 30 sec even without vad_segments
if self.use_vad_model:
vad_segments = self.vad_model(
{
"waveform": audio.unsqueeze(0),
"sample_rate": 16000,
}
)
vad_segments = merge_chunks(
vad_segments,
self.chunk_length,
onset=self.vad_onset,
offset=self.vad_offset,
)
elif duration < self.chunk_length:
vad_segments = [
{"start": 0.0, "end": duration, "segments": [(0.0, duration)]}
]
else:
raise RuntimeError(
"No vad segments found. Set 'use_vad_model' to True while loading the model"
)
if self.model.model.is_multilingual:
language = language or self.preset_language
elif language != "en":
if language is not None:
self.model.logger.warning(
f"English-only model is used, but {language} language is"
"chosen, setting language to 'en'."
)
language = "en"
(
language,
language_probability,
task,
all_language_probs,
) = self.get_language_and_tokenizer(audio, task, language)
duration_after_vad = sum(
segment["end"] - segment["start"] for segment in vad_segments
)
# batched options: see the difference with default options in WhisperModel
batched_options = TranscriptionOptions(
beam_size=beam_size,
best_of=best_of,
patience=patience,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
log_prob_threshold=log_prob_threshold,
log_prob_low_threshold=log_prob_low_threshold,
no_speech_threshold=no_speech_threshold,
compression_ratio_threshold=compression_ratio_threshold,
temperatures=(
temperature if isinstance(temperature, (list, tuple)) else [temperature]
),
initial_prompt=initial_prompt,
prefix=prefix,
suppress_blank=suppress_blank,
suppress_tokens=get_suppressed_tokens(self.tokenizer, suppress_tokens),
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
max_new_tokens=max_new_tokens,
hotwords=hotwords,
word_timestamps=word_timestamps,
hallucination_silence_threshold=None,
condition_on_previous_text=False,
clip_timestamps="0",
prompt_reset_on_temperature=0.5,
multilingual=False,
output_language=None,
without_timestamps=without_timestamps,
max_initial_timestamp=0.0,
)
info = TranscriptionInfo(
language=language,
language_probability=language_probability,
duration=duration,
duration_after_vad=duration_after_vad,
transcription_options=batched_options,
vad_options=None,
all_language_probs=all_language_probs,
)
audio_segments, segments_metadata = self.audio_split(
audio, vad_segments, sampling_rate
)
to_cpu = (
self.model.model.device == "cuda" and len(self.model.model.device_index) > 1
)
audio_segments = torch.nested.nested_tensor(audio_segments).to_padded_tensor(
padding=0
)
features = torch.stack(
[
self.model.feature_extractor(audio_segment, to_cpu=to_cpu)[
..., : self.model.feature_extractor.nb_max_frames
]
for audio_segment in audio_segments
]
)
segments = self._batched_segments_generator(
features,
segments_metadata,
batch_size,
batched_options,
log_progress,
)
return segments, info
def _batched_segments_generator(
self, features, segments_metadata, batch_size, options, log_progress
):
pbar = tqdm(total=len(features), disable=not log_progress, position=0)
seg_idx = 0
for i in range(0, len(features), batch_size):
results = self.forward(
features[i : i + batch_size],
segments_metadata[i : i + batch_size],
**options._asdict(),
)
for result in results:
for segment in result:
seg_idx += 1
yield Segment(
seek=int(result[-1]["end"] * self.model.frames_per_second),
id=seg_idx,
text=segment["text"],
start=round(segment["start"], 3),
end=round(segment["end"], 3),
words=(
None
if not options.word_timestamps
else [Word(**word) for word in segment["words"]]
),
tokens=segment["tokens"],
avg_logprob=segment["avg_logprob"],
no_speech_prob=segment["no_speech_prob"],
compression_ratio=segment["compression_ratio"],
)
pbar.update(1)
pbar.close()
# revert the tokenizer if multilingual inference is enabled
if self.preset_language is None:
self.tokenizer = None
self.last_speech_timestamp = 0.0
class WhisperModel:
def __init__(
self,
model_size_or_path: str,
device: str = "auto",
device_index: Union[int, List[int]] = 0,
compute_type: str = "default",
cpu_threads: int = 16,
num_workers: int = 1,
download_root: Optional[str] = None,
local_files_only: bool = False,
files: dict = None,
**model_kwargs,
):
"""Initializes the Whisper model.
Args:
model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
small, small.en, distil-small.en, medium, medium.en, distil-medium.en, large-v1,
large-v2, large-v3, large, distil-large-v2 or distil-large-v3), a path to a
converted model directory, or a CTranslate2-converted Whisper model ID from the HF Hub.
When a size or a model ID is configured, the converted model is downloaded
from the Hugging Face Hub.
device: Device to use for computation ("cpu", "cuda", "auto").
device_index: Device ID to use.
The model can also be loaded on multiple GPUs by passing a list of IDs
(e.g. [0, 1, 2, 3]). In that case, multiple transcriptions can run in parallel
when transcribe() is called from multiple Python threads (see also num_workers).
compute_type: Type to use for computation.
See https://opennmt.net/CTranslate2/quantization.html.
cpu_threads: Number of threads to use when running on CPU (4 by default).
A non zero value overrides the OMP_NUM_THREADS environment variable.
num_workers: When transcribe() is called from multiple Python threads,
having multiple workers enables true parallelism when running the model
(concurrent calls to self.model.generate() will run in parallel).
This can improve the global throughput at the cost of increased memory usage.
download_root: Directory where the models should be saved. If not set, the models
are saved in the standard Hugging Face cache directory.
local_files_only: If True, avoid downloading the file and return the path to the
local cached file if it exists.
files: Load model files from the memory. This argument is a dictionary mapping file names
to file contents as file-like or bytes objects. If this is set, model_path acts as an
identifier for this model.
"""
self.logger = get_logger()
tokenizer_bytes, preprocessor_bytes = None, None
if files:
model_path = model_size_or_path
tokenizer_bytes = files.pop("tokenizer.json", None)
preprocessor_bytes = files.pop("preprocessor_config.json", None)
elif os.path.isdir(model_size_or_path):
model_path = model_size_or_path
else:
model_path = download_model(
model_size_or_path,
local_files_only=local_files_only,
cache_dir=download_root,
)
self.device = device
# set the random seed to make sure consistency across runs
ctranslate2.set_random_seed(42)
self.model = ctranslate2.models.Whisper(
model_path,
device=self.device,
device_index=device_index,
compute_type=compute_type,
intra_threads=cpu_threads,
inter_threads=num_workers,
files=files,
**model_kwargs,
)
tokenizer_file = os.path.join(model_path, "tokenizer.json")
if tokenizer_bytes:
self.hf_tokenizer = tokenizers.Tokenizer.from_buffer(tokenizer_bytes)
elif os.path.isfile(tokenizer_file):
self.hf_tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
else:
self.hf_tokenizer = tokenizers.Tokenizer.from_pretrained(
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
)
self.feat_kwargs = self._get_feature_kwargs(model_path, preprocessor_bytes)
self.feature_extractor = FeatureExtractor(
**self.feat_kwargs, device=self.device
)
self.input_stride = 2
self.num_samples_per_token = (
self.feature_extractor.hop_length * self.input_stride
)
self.frames_per_second = (
self.feature_extractor.sampling_rate // self.feature_extractor.hop_length
)
self.tokens_per_second = (
self.feature_extractor.sampling_rate // self.num_samples_per_token
)
self.time_precision = 0.02
self.max_length = 448
@property
def supported_languages(self) -> List[str]:
"""The languages supported by the model."""
return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]
def _get_feature_kwargs(self, model_path, preprocessor_bytes=None) -> dict:
config = {}
try:
config_path = os.path.join(model_path, "preprocessor_config.json")
if preprocessor_bytes:
config = json.loads(preprocessor_bytes)
elif os.path.isfile(config_path):
with open(config_path, "r", encoding="utf-8") as file:
config = json.load(file)
else:
return config
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
return {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning("Could not load preprocessor config: %s", e)
return config
def transcribe(
self,
audio: Union[str, BinaryIO, torch.Tensor, np.ndarray],
language: Optional[str] = None,
task: str = "transcribe",
beam_size: int = 5,
best_of: int = 5,
patience: float = 1,
length_penalty: float = 1,
repetition_penalty: float = 1,
no_repeat_ngram_size: int = 0,
temperature: Union[float, List[float], Tuple[float, ...]] = [
0.0,
0.2,
0.4,
0.6,
0.8,
1.0,
],
compression_ratio_threshold: Optional[float] = 2.4,
log_prob_threshold: Optional[float] = -1.0,
log_prob_low_threshold: Optional[float] = None,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
prompt_reset_on_temperature: float = 0.5,
initial_prompt: Optional[Union[str, Iterable[int]]] = None,
prefix: Optional[str] = None,
suppress_blank: bool = True,
suppress_tokens: Optional[List[int]] = [-1],
without_timestamps: bool = False,
max_initial_timestamp: float = 1.0,
word_timestamps: bool = False,
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,,!!??::”)]}、",
multilingual: bool = False,
output_language: Optional[str] = None,
vad_filter: bool = False,
vad_parameters: Optional[Union[dict, VadOptions]] = None,
max_new_tokens: Optional[int] = None,
chunk_length: Optional[int] = None,
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
hotwords: Optional[str] = None,
language_detection_threshold: Optional[float] = None,
language_detection_segments: int = 1,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""Transcribes an input file.
Arguments:
audio: Path to the input file (or a file-like object), or the audio waveform.
language: The language spoken in the audio. It should be a language code such
as "en" or "fr". If not set, the language will be detected in the first 30 seconds
of audio.
task: Task to execute (transcribe or translate).
beam_size: Beam size to use for decoding.
best_of: Number of candidates when sampling with non-zero temperature.
patience: Beam search patience factor.
length_penalty: Exponential length penalty constant.
repetition_penalty: Penalty applied to the score of previously generated tokens
(set > 1 to penalize).
no_repeat_ngram_size: Prevent repetitions of ngrams with this size (set 0 to disable).
temperature: Temperature for sampling. It can be a tuple of temperatures,
which will be successively used upon failures according to either
`compression_ratio_threshold` or `log_prob_threshold`.
compression_ratio_threshold: If the gzip compression ratio is above this value,
treat as failed.
log_prob_threshold: If the average log probability over sampled tokens is
below this value, treat as failed.
log_prob_low_threshold: This parameter alone is sufficient to skip an output text,
wheras log_prob_threshold also looks for appropriate no_speech_threshold value.
This value should be less than log_prob_threshold.
no_speech_threshold: If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
condition_on_previous_text: If True, the previous output of the model is provided
as a prompt for the next window; disabling may make the text inconsistent across
windows, but the model becomes less prone to getting stuck in a failure loop,
such as repetition looping or timestamps going out of sync.
prompt_reset_on_temperature: Resets prompt if temperature is above this value.
Arg has effect only if condition_on_previous_text is True.
initial_prompt: Optional text string or iterable of token ids to provide as a
prompt for the first window.
prefix: Optional text to provide as a prefix for the first window.
suppress_blank: Suppress blank outputs at the beginning of the sampling.
suppress_tokens: List of token IDs to suppress. -1 will suppress a default set
of symbols as defined in `tokenizer.non_speech_tokens()`.
without_timestamps: Only sample text tokens.
max_initial_timestamp: The initial timestamp cannot be later than this.
word_timestamps: Extract word-level timestamps using the cross-attention pattern
and dynamic time warping, and include the timestamps for each word in each segment.
prepend_punctuations: If word_timestamps is True, merge these punctuation symbols
with the next word
append_punctuations: If word_timestamps is True, merge these punctuation symbols
with the previous word
multilingual: If True, perform transcription on multilingual videos
and return the transcript based
on the 'output_language' flag.
output_language: Valid only if multilingual is set to True.
Specifies the string representing the output language. One of
'en' (English) or 'hybrid' (code-switched transcription).
vad_filter: Enable the voice activity detection (VAD) to filter out parts of the audio
without speech. This step is using the Silero VAD model
https://github.com/snakers4/silero-vad.
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
parameters and default values in the class `VadOptions`).
max_new_tokens: Maximum number of new tokens to generate per-chunk. If not set,
the maximum will be set by the default max_length.
chunk_length: The length of audio segments. If it is not None, it will overwrite the
default chunk_length of the FeatureExtractor.
clip_timestamps:
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file.
vad_filter will be ignored if clip_timestamps is used.
hallucination_silence_threshold:
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected
hotwords:
Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.
language_detection_threshold: If the maximum probability of the language tokens is higher
than this value, the language is detected.
language_detection_segments: Number of segments to consider for the language detection.
Returns:
A tuple with:
- a generator over transcribed segments
- an instance of TranscriptionInfo
"""
sampling_rate = self.feature_extractor.sampling_rate
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio)
elif not isinstance(audio, torch.Tensor):
audio = decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
duration_after_vad = duration
self.logger.info(
"Processing audio with duration %s", format_timestamp(duration)
)
if vad_filter and clip_timestamps == "0":
if vad_parameters is None:
vad_parameters = VadOptions()
elif isinstance(vad_parameters, dict):
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
self.logger.info(
"VAD filter removed %s of audio",
format_timestamp(duration - duration_after_vad),
)
if self.logger.isEnabledFor(logging.DEBUG):
self.logger.debug(
"VAD filter kept the following audio segments: %s",
", ".join(
"[%s -> %s]"
% (
format_timestamp(chunk["start"] / sampling_rate),
format_timestamp(chunk["end"] / sampling_rate),
)
for chunk in speech_chunks
),
)
else:
speech_chunks = None
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
features = self.feature_extractor(
audio, chunk_length=chunk_length, to_cpu=to_cpu
)
encoder_output = None
all_language_probs = None
# setting output_language for multilingual videos
if multilingual:
if output_language is None:
output_language = "en"
elif output_language not in ["en", "hybrid"]:
raise ValueError("Output language needs to be one of 'en'/'hybrid'.")
# detecting the language if not provided
if language is None:
if not self.model.is_multilingual:
language = "en"
language_probability = 1
else:
if (
language_detection_segments is None
or language_detection_segments < 1
):
language_detection_segments = 1
start_timestamp = (
float(clip_timestamps.split(",")[0])
if isinstance(clip_timestamps, str)
else clip_timestamps[0]
)
content_frames = (
features.shape[-1] - self.feature_extractor.nb_max_frames
)
seek = (
int(start_timestamp * self.frames_per_second)
if start_timestamp * self.frames_per_second < content_frames
else 0
)
end_frames = min(
seek
+ self.feature_extractor.nb_max_frames
* language_detection_segments,
content_frames,
)
detected_language_info = {}
while seek <= end_frames:
segment = features[
:, seek : seek + self.feature_extractor.nb_max_frames
]
encoder_output = self.encode(segment)
# results is a list of tuple[str, float] with language names and
# probabilities.
results = self.model.detect_language(encoder_output)[0]
# Parse language names to strip out markers
all_language_probs = [
(token[2:-2], prob) for (token, prob) in results
]
# Get top language token and probability
language, language_probability = all_language_probs[0]
if (
language_detection_threshold is None
or language_probability > language_detection_threshold
):
break
detected_language_info.setdefault(language, []).append(
language_probability
)
seek += segment.shape[-1]
else:
# If no language detected for all segments, the majority vote of the highest
# projected languages for all segments is used to determine the language.
language = max(
detected_language_info,
key=lambda lang: len(detected_language_info[lang]),
)
language_probability = max(detected_language_info[language])
self.logger.info(
"Detected language '%s' with probability %.2f",
language,
language_probability,
)
else:
if not self.model.is_multilingual and language != "en":
self.logger.warning(
"The current model is English-only but the language parameter is set to '%s'; "
"using 'en' instead." % language
)
language = "en"
language_probability = 1
tokenizer = Tokenizer(
self.hf_tokenizer,
self.model.is_multilingual,
task=task,
language=language,
)
options = TranscriptionOptions(
beam_size=beam_size,
best_of=best_of,
patience=patience,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
log_prob_threshold=log_prob_threshold,
log_prob_low_threshold=log_prob_low_threshold,
no_speech_threshold=no_speech_threshold,
compression_ratio_threshold=compression_ratio_threshold,
condition_on_previous_text=condition_on_previous_text,
prompt_reset_on_temperature=prompt_reset_on_temperature,
temperatures=(
temperature if isinstance(temperature, (list, tuple)) else [temperature]
),
initial_prompt=initial_prompt,
prefix=prefix,
suppress_blank=suppress_blank,
suppress_tokens=(
get_suppressed_tokens(tokenizer, suppress_tokens)
if suppress_tokens
else suppress_tokens
),
without_timestamps=without_timestamps,
max_initial_timestamp=max_initial_timestamp,
word_timestamps=word_timestamps,
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
multilingual=multilingual,
output_language=output_language,
max_new_tokens=max_new_tokens,
clip_timestamps=clip_timestamps,
hallucination_silence_threshold=hallucination_silence_threshold,
hotwords=hotwords,
)
segments = self.generate_segments(features, tokenizer, options, encoder_output)
if speech_chunks:
segments = restore_speech_timestamps(segments, speech_chunks, sampling_rate)
info = TranscriptionInfo(
language=language,
language_probability=language_probability,
duration=duration,
duration_after_vad=duration_after_vad,
transcription_options=options,
vad_options=vad_parameters,
all_language_probs=all_language_probs,
)
return segments, info
def _split_segments_by_timestamps(
self,
tokenizer: Tokenizer,
tokens: List[int],
time_offset: float,
segment_size: int,
segment_duration: float,
seek: int,
) -> List[List[int]]:
current_segments = []
single_timestamp_ending = (
len(tokens) >= 2 and tokens[-2] < tokenizer.timestamp_begin <= tokens[-1]
)
consecutive_timestamps = [
i
for i in range(len(tokens))
if i > 0
and tokens[i] >= tokenizer.timestamp_begin
and tokens[i - 1] >= tokenizer.timestamp_begin
]
if len(consecutive_timestamps) > 0:
slices = list(consecutive_timestamps)
if single_timestamp_ending:
slices.append(len(tokens))
last_slice = 0
for current_slice in slices:
sliced_tokens = tokens[last_slice:current_slice]
start_timestamp_position = sliced_tokens[0] - tokenizer.timestamp_begin
end_timestamp_position = sliced_tokens[-1] - tokenizer.timestamp_begin
start_time = (
time_offset + start_timestamp_position * self.time_precision
)
end_time = time_offset + end_timestamp_position * self.time_precision
current_segments.append(
dict(
seek=seek,
start=start_time,
end=end_time,
tokens=sliced_tokens,
)
)
last_slice = current_slice
if single_timestamp_ending:
# single timestamp at the end means no speech after the last timestamp.
seek += segment_size
else:
# otherwise, ignore the unfinished segment and seek to the last timestamp
last_timestamp_position = (
tokens[last_slice - 1] - tokenizer.timestamp_begin
)
seek += last_timestamp_position * self.input_stride
else:
duration = segment_duration
timestamps = [
token for token in tokens if token >= tokenizer.timestamp_begin
]
if len(timestamps) > 0 and timestamps[-1] != tokenizer.timestamp_begin:
last_timestamp_position = timestamps[-1] - tokenizer.timestamp_begin
duration = last_timestamp_position * self.time_precision
current_segments.append(
dict(
seek=seek,
start=time_offset,
end=time_offset + duration,
tokens=tokens,
)
)
seek += segment_size
return current_segments, seek, single_timestamp_ending
def generate_segments(
self,
features: torch.Tensor,
tokenizer: Tokenizer,
options: TranscriptionOptions,
encoder_output: Optional[ctranslate2.StorageView] = None,
) -> Iterable[Segment]:
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
if isinstance(options.clip_timestamps, str):
options = options._replace(
clip_timestamps=[
float(ts)
for ts in (
options.clip_timestamps.split(",")
if options.clip_timestamps
else []
)
]
)
seek_points: List[int] = [
round(ts * self.frames_per_second) for ts in options.clip_timestamps
]
if len(seek_points) == 0:
seek_points.append(0)
if len(seek_points) % 2 == 1:
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(
zip(seek_points[::2], seek_points[1::2])
)
punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"
idx = 0
clip_idx = 0
seek = seek_clips[clip_idx][0]
all_tokens = []
prompt_reset_since = 0
if options.initial_prompt is not None:
if isinstance(options.initial_prompt, str):
initial_prompt = " " + options.initial_prompt.strip()
initial_prompt_tokens = tokenizer.encode(initial_prompt)
all_tokens.extend(initial_prompt_tokens)
else:
all_tokens.extend(options.initial_prompt)
last_speech_timestamp = 0.0
# NOTE: This loop is obscurely flattened to make the diff readable.
# A later commit should turn this into a simpler nested loop.
# for seek_clip_start, seek_clip_end in seek_clips:
# while seek < seek_clip_end
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek_clip_end > content_frames:
seek_clip_end = content_frames
if seek < seek_clip_start:
seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips):
seek = seek_clips[clip_idx][0]
continue
time_offset = seek * self.feature_extractor.time_per_frame
window_end_time = float(
(seek + self.feature_extractor.nb_max_frames)
* self.feature_extractor.time_per_frame
)
segment_size = min(
self.feature_extractor.nb_max_frames,
content_frames - seek,
seek_clip_end - seek,
)
segment = features[:, seek : seek + segment_size]
segment_duration = segment_size * self.feature_extractor.time_per_frame
segment = pad_or_trim(segment, self.feature_extractor.nb_max_frames)
if self.logger.isEnabledFor(logging.DEBUG):
self.logger.debug(
"Processing segment at %s", format_timestamp(time_offset)
)
previous_tokens = all_tokens[prompt_reset_since:]
if encoder_output is None:
encoder_output = self.encode(segment)
# Perform language detection at every segment to update task based on output language,
# if the language is english, task is transcribe,
# else the task is translate to english (default)
# or transcribe if 'output_language' is 'hybrid'.
if options.multilingual:
results = self.model.detect_language(encoder_output)
language_token, language_probability = results[0][0]
language = language_token[2:-2]
if options.output_language == "en" and language != "en":
task = "translate"
else:
task = "transcribe"
# Update tokenizer based on task and language
tokenizer.task = tokenizer.tokenizer.token_to_id(f"<|{task}|>")
tokenizer.language = tokenizer.tokenizer.token_to_id(language_token)
tokenizer.language_code = language
# Update prompt based on task and language
prompt = self.get_prompt(
tokenizer,
previous_tokens,
without_timestamps=options.without_timestamps,
prefix=options.prefix if seek == 0 else None,
hotwords=options.hotwords,
)
if seek > 0 or encoder_output is None:
encoder_output = self.encode(segment)
(
result,
avg_logprob,
temperature,
compression_ratio,
) = self.generate_with_fallback(encoder_output, prompt, tokenizer, options)
if options.no_speech_threshold is not None:
# no voice activity check
should_skip = result.no_speech_prob > options.no_speech_threshold
if (
options.log_prob_threshold is not None
and avg_logprob > options.log_prob_threshold
):
# don't skip if the logprob is high enough, despite the no_speech_prob
should_skip = False
if should_skip:
self.logger.debug(
"No speech threshold is met (%f > %f)",
result.no_speech_prob,
options.no_speech_threshold,
)
# Skip if the logprob is very low (below the threshold value),
# despite no_speech_prob being low (ex: Too ambiguous outputs)
if options.log_prob_low_threshold:
if avg_logprob < options.log_prob_low_threshold:
should_skip = True
self.logger.debug(
"log prob low threshold is met (%f > %f)",
avg_logprob,
options.log_prob_low_threshold,
)
if should_skip:
# fast-forward to the next segment boundary
seek += segment_size
continue
tokens = result.sequences_ids[0]
previous_seek = seek
# anomalous words are very long/short/improbable
def word_anomaly_score(word: dict) -> float:
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15:
score += 1.0
if duration < 0.133:
score += (0.133 - duration) * 15
if duration > 2.0:
score += duration - 2.0
return score
def is_segment_anomaly(segment: Optional[dict]) -> bool:
if segment is None or not segment["words"]:
return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)
def next_words_segment(segments: List[dict]) -> Optional[dict]:
return next((s for s in segments if s["words"]), None)
(
current_segments,
seek,
single_timestamp_ending,
) = self._split_segments_by_timestamps(
tokenizer=tokenizer,
tokens=tokens,
time_offset=time_offset,
segment_size=segment_size,
segment_duration=segment_duration,
seek=seek,
)
if options.word_timestamps:
self.add_word_timestamps(
[current_segments],
tokenizer,
encoder_output,
segment_size,
options.prepend_punctuations,
options.append_punctuations,
last_speech_timestamp=last_speech_timestamp,
)
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
seek = round(last_word_end * self.frames_per_second)
# skip silence before possible hallucinations
if options.hallucination_silence_threshold is not None:
threshold = options.hallucination_silence_threshold
# if first segment might be a hallucination, skip leading silence
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * self.frames_per_second)
continue
# skip silence before any possible hallucination that is surrounded
# by silence or more hallucinations
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]:
continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(
current_segments[si + 1 :]
)
if next_segment is not None:
hal_next_start = next_segment["words"][0]["start"]
else:
hal_next_start = time_offset + segment_duration
silence_before = (
segment["start"] - hal_last_end > threshold
or segment["start"] < threshold
or segment["start"] - time_offset < 2.0
)
silence_after = (
hal_next_start - segment["end"] > threshold
or is_segment_anomaly(next_segment)
or window_end_time - segment["end"] < 2.0
)
if silence_before and silence_after:
seek = round(
max(time_offset + 1, segment["start"])
* self.frames_per_second
)
if content_duration - segment["end"] < threshold:
seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]
last_word_end = get_end(current_segments)
if last_word_end is not None:
last_speech_timestamp = last_word_end
for segment in current_segments:
tokens = segment["tokens"]
text = tokenizer.decode(tokens)
if segment["start"] == segment["end"] or not text.strip():
continue
all_tokens.extend(tokens)
idx += 1
yield Segment(
id=idx,
seek=seek,
start=segment["start"],
end=segment["end"],
text=text,
tokens=tokens,
temperature=temperature,
avg_logprob=avg_logprob,
compression_ratio=compression_ratio,
no_speech_prob=result.no_speech_prob,
words=(
[Word(**word) for word in segment["words"]]
if options.word_timestamps
else None
),
)
if (
not options.condition_on_previous_text
or temperature > options.prompt_reset_on_temperature
):
if options.condition_on_previous_text:
self.logger.debug(
"Reset prompt. prompt_reset_on_temperature threshold is met %f > %f",
temperature,
options.prompt_reset_on_temperature,
)
prompt_reset_since = len(all_tokens)
def encode(self, features: torch.Tensor) -> ctranslate2.StorageView:
# When the model is running on multiple GPUs, the encoder output should be moved
# to the CPU since we don't know which GPU will handle the next job.
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
if features.ndim == 2:
features = features.unsqueeze(0)
features = get_ctranslate2_storage(features)
return self.model.encode(features, to_cpu=to_cpu)
def generate_with_fallback(
self,
encoder_output: ctranslate2.StorageView,
prompt: List[int],
tokenizer: Tokenizer,
options: TranscriptionOptions,
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float, float]:
decode_result = None
all_results = []
below_cr_threshold_results = []
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
)
if options.max_new_tokens is not None:
max_length = len(prompt) + options.max_new_tokens
else:
max_length = self.max_length
if max_length > self.max_length:
raise ValueError(
f"The length of the prompt is {len(prompt)}, and the `max_new_tokens` "
f"{max_length - len(prompt)}. Thus, the combined length of the prompt "
f"and `max_new_tokens` is: {max_length}. This exceeds the "
f"`max_length` of the Whisper model: {self.max_length}. "
"You should either reduce the length of your prompt, or "
"reduce the value of `max_new_tokens`, "
f"so that their combined length is less that {self.max_length}."
)
for temperature in options.temperatures:
if temperature > 0:
kwargs = {
"beam_size": 1,
"num_hypotheses": options.best_of,
"sampling_topk": 0,
"sampling_temperature": temperature,
}
else:
kwargs = {
"beam_size": options.beam_size,
"patience": options.patience,
}
result = self.model.generate(
encoder_output,
[prompt],
length_penalty=options.length_penalty,
repetition_penalty=options.repetition_penalty,
no_repeat_ngram_size=options.no_repeat_ngram_size,
max_length=max_length,
return_scores=True,
return_no_speech_prob=True,
suppress_blank=options.suppress_blank,
suppress_tokens=options.suppress_tokens,
max_initial_timestamp_index=max_initial_timestamp_index,
**kwargs,
)[0]
tokens = result.sequences_ids[0]
# Recover the average log prob from the returned score.
seq_len = len(tokens)
cum_logprob = result.scores[0] * (seq_len**options.length_penalty)
avg_logprob = cum_logprob / (seq_len + 1)
text = tokenizer.decode(tokens).strip()
compression_ratio = get_compression_ratio(text)
decode_result = (
result,
avg_logprob,
temperature,
compression_ratio,
)
all_results.append(decode_result)
needs_fallback = False
if options.compression_ratio_threshold is not None:
if compression_ratio > options.compression_ratio_threshold:
needs_fallback = True # too repetitive
self.logger.debug(
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
temperature,
compression_ratio,
options.compression_ratio_threshold,
)
else:
below_cr_threshold_results.append(decode_result)
if (
options.log_prob_threshold is not None
and avg_logprob < options.log_prob_threshold
):
needs_fallback = True # average log probability is too low
self.logger.debug(
"Log probability threshold is not met with temperature %.1f (%f < %f)",
temperature,
avg_logprob,
options.log_prob_threshold,
)
if (
options.no_speech_threshold is not None
and result.no_speech_prob > options.no_speech_threshold
and options.log_prob_threshold is not None
and avg_logprob < options.log_prob_threshold
):
needs_fallback = False # silence
if not needs_fallback:
break
else:
# all failed, select the result with the highest average log probability
decode_result = max(
below_cr_threshold_results or all_results, key=lambda x: x[1]
)
# to pass final temperature for prompt_reset_on_temperature
decode_result = (
decode_result[0],
decode_result[1],
temperature,
decode_result[3],
)
return decode_result
def get_prompt(
self,
tokenizer: Tokenizer,
previous_tokens: List[int],
without_timestamps: bool = False,
prefix: Optional[str] = None,
hotwords: Optional[str] = None,
) -> List[int]:
prompt = []
if previous_tokens or (hotwords and not prefix):
prompt.append(tokenizer.sot_prev)
if hotwords and not prefix:
hotwords_tokens = tokenizer.encode(" " + hotwords.strip())
if len(hotwords_tokens) >= self.max_length // 2:
hotwords_tokens = hotwords_tokens[: self.max_length // 2 - 1]
prompt.extend(hotwords_tokens)
if previous_tokens:
prompt.extend(previous_tokens[-(self.max_length // 2 - 1) :])
prompt.extend(tokenizer.sot_sequence)
if without_timestamps:
prompt.append(tokenizer.no_timestamps)
if prefix:
prefix_tokens = tokenizer.encode(" " + prefix.strip())
if len(prefix_tokens) >= self.max_length // 2:
prefix_tokens = prefix_tokens[: self.max_length // 2 - 1]
if not without_timestamps:
prompt.append(tokenizer.timestamp_begin)
prompt.extend(prefix_tokens)
return prompt
def add_word_timestamps(
self,
segments: List[dict],
tokenizer: Tokenizer,
encoder_output: ctranslate2.StorageView,
num_frames: int,
prepend_punctuations: str,
append_punctuations: str,
last_speech_timestamp: float,
) -> float:
if len(segments) == 0:
return
text_tokens = []
text_tokens_per_segment = []
for segment in segments:
segment_tokens = [
[token for token in subsegment["tokens"] if token < tokenizer.eot]
for subsegment in segment
]
text_tokens.append(list(itertools.chain.from_iterable(segment_tokens)))
text_tokens_per_segment.append(segment_tokens)
alignments = self.find_alignment(
tokenizer, text_tokens, encoder_output, num_frames
)
median_max_durations = []
for alignment in alignments:
word_durations = np.array(
[word["end"] - word["start"] for word in alignment]
)
word_durations = word_durations[word_durations.nonzero()]
median_duration = (
np.median(word_durations) if len(word_durations) > 0 else 0.0
)
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(word_durations) > 0:
sentence_end_marks = ".。!!??"
# ensure words at sentence boundaries
# are not longer than twice the median word duration.
for i in range(1, len(alignment)):
if alignment[i]["end"] - alignment[i]["start"] > max_duration:
if alignment[i]["word"] in sentence_end_marks:
alignment[i]["end"] = alignment[i]["start"] + max_duration
elif alignment[i - 1]["word"] in sentence_end_marks:
alignment[i]["start"] = alignment[i]["end"] - max_duration
merge_punctuations(alignment, prepend_punctuations, append_punctuations)
median_max_durations.append((median_duration, max_duration))
for segment_idx, segment in enumerate(segments):
word_index = 0
time_offset = segment[0]["start"]
median_duration, max_duration = median_max_durations[segment_idx]
for subsegment_idx, subsegment in enumerate(segment):
saved_tokens = 0
words = []
while word_index < len(alignments[segment_idx]) and saved_tokens < len(
text_tokens_per_segment[segment_idx][subsegment_idx]
):
timing = alignments[segment_idx][word_index]
if timing["word"]:
words.append(
dict(
word=timing["word"],
start=round(time_offset + timing["start"], 2),
end=round(time_offset + timing["end"], 2),
probability=timing["probability"],
)
)
saved_tokens += len(timing["tokens"])
word_index += 1
# hack: truncate long words at segment boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(words) > 0:
# ensure the first and second word after a pause is not longer than
# twice the median word duration.
if words[0][
"end"
] - last_speech_timestamp > median_duration * 4 and (
words[0]["end"] - words[0]["start"] > max_duration
or (
len(words) > 1
and words[1]["end"] - words[0]["start"] > max_duration * 2
)
):
if (
len(words) > 1
and words[1]["end"] - words[1]["start"] > max_duration
):
boundary = max(
words[1]["end"] / 2, words[1]["end"] - max_duration
)
words[0]["end"] = words[1]["start"] = boundary
words[0]["start"] = max(0, words[0]["end"] - max_duration)
# prefer the segment-level start timestamp if the first word is too long.
if (
subsegment["start"] < words[0]["end"]
and subsegment["start"] - 0.5 > words[0]["start"]
):
words[0]["start"] = max(
0,
min(words[0]["end"] - median_duration, subsegment["start"]),
)
else:
subsegment["start"] = words[0]["start"]
# prefer the segment-level end timestamp if the last word is too long.
if (
subsegment["end"] > words[-1]["start"]
and subsegment["end"] + 0.5 < words[-1]["end"]
):
words[-1]["end"] = max(
words[-1]["start"] + median_duration, subsegment["end"]
)
else:
subsegment["end"] = words[-1]["end"]
last_speech_timestamp = subsegment["end"]
segments[segment_idx][subsegment_idx]["words"] = words
return last_speech_timestamp
def find_alignment(
self,
tokenizer: Tokenizer,
text_tokens: List[int],
encoder_output: ctranslate2.StorageView,
num_frames: int,
median_filter_width: int = 7,
) -> List[dict]:
if len(text_tokens) == 0:
return []
results = self.model.align(
encoder_output,
tokenizer.sot_sequence,
text_tokens,
num_frames,
median_filter_width=median_filter_width,
)
return_list = []
for result, text_token in zip(results, text_tokens):
text_token_probs = result.text_token_probs
alignments = result.alignments
text_indices = np.array([pair[0] for pair in alignments])
time_indices = np.array([pair[1] for pair in alignments])
words, word_tokens = tokenizer.split_to_word_tokens(
text_token + [tokenizer.eot]
)
if len(word_tokens) <= 1:
# return on eot only
# >>> np.pad([], (1, 0))
# array([0.])
# This results in crashes when we lookup jump_times with float, like
# IndexError: arrays used as indices must be of integer (or boolean) type
return []
word_boundaries = np.pad(
np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0)
)
if len(word_boundaries) <= 1:
return []
jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(
bool
)
jump_times = time_indices[jumps] / self.tokens_per_second
start_times = jump_times[word_boundaries[:-1]]
end_times = jump_times[word_boundaries[1:]]
word_probabilities = [
np.mean(text_token_probs[i:j])
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
]
return_list.append(
[
dict(
word=word,
tokens=tokens,
start=start,
end=end,
probability=probability,
)
for word, tokens, start, end, probability in zip(
words, word_tokens, start_times, end_times, word_probabilities
)
]
)
return return_list
def generate_segment_batched(
self,
features: torch.Tensor,
tokenizer: Tokenizer,
options: dict,
):
batch_size = features.shape[0]
all_tokens = []
prompt_reset_since = 0
if options["initial_prompt"] is not None:
initial_prompt = " " + options["initial_prompt"].strip()
initial_prompt_tokens = tokenizer.encode(initial_prompt)
all_tokens.extend(initial_prompt_tokens)
previous_tokens = all_tokens[prompt_reset_since:]
prompt = self.get_prompt(
tokenizer,
previous_tokens,
without_timestamps=options["without_timestamps"],
prefix=options["prefix"],
)
encoder_output = self.encode(features)
result = self.model.generate(
encoder_output,
[prompt] * batch_size,
beam_size=options["beam_size"],
patience=options["patience"],
length_penalty=options["length_penalty"],
max_length=self.max_length,
suppress_blank=options["suppress_blank"],
suppress_tokens=options["suppress_tokens"],
return_scores=True,
return_no_speech_prob=True,
)
output = []
for res in result:
output.append({})
# return scores
seq_len = len(res.sequences_ids[0])
cum_logprob = res.scores[0] * (seq_len ** options["length_penalty"])
output[-1]["avg_logprob"] = cum_logprob / (seq_len + 1)
# return no speech prob
output[-1]["no_speech_prob"] = res.no_speech_prob
output[-1]["tokens"] = res.sequences_ids[0]
return encoder_output, output
def detect_language(self, audio: torch.Tensor):
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
segment = self.feature_extractor(audio, padding=True, to_cpu=to_cpu)[
:, : self.feature_extractor.nb_max_frames
]
encoder_output = self.encode(segment)
results = self.model.detect_language(encoder_output)
language_token, language_probability = results[0][0]
language = language_token[2:-2]
self.logger.info(
f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio..."
)
all_language_probs = [(token[2:-2], prob) for (token, prob) in results[0]]
return language, language_probability, all_language_probs
def detect_language_multi_segment(
self, audio: Union[str, BinaryIO, torch.Tensor], params: Optional[dict] = None
):
"""
Detect language based on N highly-confident segments of a language.
"""
# The threshold is used to decide if the audio is silence or not.
# The default is 0.02 (2.0%) i.e, if more than 2.0% of the audio is silent,
# the audio is considered as silence.
if not params:
params = {
"multilingual": False,
"speech_percentage_threshold": 0.02,
"language_detection_segments": 4,
"vad_filter": True,
"vad_min_silence_duration": 2500,
"language_threshold": 0.7,
}
if params.get("multilingual", False):
logging.warning(
"lang_id is not supported for multilingual audios, detecting the major language."
)
speech_percentage_threshold = params.get("speech_percentage_threshold", 0.02)
language_threshold = params.get("language_threshold", 0.7)
num_detection_segments = params.get("language_detection_segments", 4)
vad_filter_enabled = params.get("vad_filter", True)
vad_params = dict(
min_silence_duration_ms=params.get("vad_min_silence_duration", 2500)
)
if vad_filter_enabled:
vad_params = VadOptions(**vad_params)
# decode audio if it is not decoded already
sampling_rate = self.feature_extractor.sampling_rate
if not isinstance(audio, torch.Tensor):
audio: torch.Tensor = decode_audio(audio, sampling_rate=sampling_rate)
# calculate duration of audio as number of seconds
# audio.shape[0] is the number of samples in the audio
# sampling_rate is the number of samples per second
# if we divide the number of samples by the number of samples per second,
# we get the duration in seconds
duration = audio.shape[0] / sampling_rate
# Check if vad is enabled, and collect voiced segments
if vad_filter_enabled:
# get chunks of audio that contain speech
speech_chunks = get_speech_timestamps(audio, vad_params)
# merge chunks of audio that contain speech into a single array
audio = collect_chunks(audio, speech_chunks)
# calculate new duration of audio without silence
duration_vad = audio.shape[0] / sampling_rate
logging.debug(
f"Lang ID: VAD filter removed {duration - duration_vad} sec of audio"
)
# if the audio after VAD is less than 2% of the original audio, consider it as silence
if duration_vad / duration < speech_percentage_threshold:
return {"language_code": None, "language_confidence": 1.0}
# update duration to be the duration after VAD
duration = duration_vad
# if the duration of the audio is less than 1 second, consider it as silence
if duration < 1.0:
return {"language_code": None, "language_confidence": 1.0}
# number of feature frames in 30 seconds of audio is 3000
nb_max_frames = self.feature_extractor.nb_max_frames
# extract features from audio with padding (default)
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
features = self.feature_extractor(audio, to_cpu=to_cpu)
# number of segments in the audio
num_segments = features.shape[-1] // nb_max_frames
# more number of segments than possible with the duration of file
if num_detection_segments > num_segments:
logging.warning(
f"Lang ID: Can not have more segments, setting {num_segments} segments."
)
num_detection_segments = num_segments
# create a list of indices to randomly select segments from
indices = list(range(num_detection_segments))
# fix seed to get deterministic results
random.seed(0)
random.shuffle(indices)
detected_languages = []
all_language_probabilities = defaultdict(list)
confident_language_probabilities = defaultdict(list)
num_confident_segments_per_language = defaultdict(int)
# Iterate over the randomly selected indices of the segments.
#
# For each segment, extract features and detect language.
#
# If the language is confident, add it to the list of confident segments for that language.
#
# If the number of confident segments for a language
# is greater than or equal to the number of detection segments,
# return the language and the average probability of the language.
#
# If we are unable to get sufficient number of confident predcitions,
# return the most frequently detected language with maximum probability.
#
# We need to get sufficient number of confident predictions per language, not in total.
for i in indices:
segment_features = features[:, i * nb_max_frames : (i + 1) * nb_max_frames]
try:
encoder_output = self.encode(segment_features)
results = self.model.detect_language(encoder_output)[0]
except ValueError as e: # or RuntimeError
logging.error(f"Inference error:{e}")
# results is the list of classes (languages) and their probabilities (descending),
# for eg: [('<|de|>', 0.482177734375),('<|en|>', 0.283447265625),...]
# take top language token and probability
# and parse language token to strip out markers
# for eg: '<|de|>' -> 'de'
language_token = results[0][0]
language = language_token[2:-2]
language_probability = results[0][1]
detected_languages.append(language)
all_language_probabilities[language].append(language_probability)
# only consider if the language prediction is confident
if language_probability > language_threshold:
num_confident_segments_per_language[language] += 1
# Add language and probability to the list of languages when it is confident
confident_language_probabilities[language].append(language_probability)
# return the language when sufficient number of confident segments is achieved
if (
num_confident_segments_per_language[language]
>= num_detection_segments
):
# Considering the average probability of only confident segments
mean = sum(confident_language_probabilities[language]) / len(
confident_language_probabilities[language]
)
return {
"language_code": language,
"language_confidence": mean,
}
# if we are unable to get sufficient number of confident predictions,
# return the most frequently detected language.
# if there is a tie, return the one with maximum average probability.
counter = Counter(detected_languages)
# Define the key function to select frequent language with attached probabilities
def key_func(language):
# Calculate the frequency of the language
frequency = counter[language]
# Calculate the average probability of the language
prob_avg = sum(all_language_probabilities[language]) / len(
all_language_probabilities[language]
)
return frequency, prob_avg
if detected_languages:
# Use the key function to find the language with maximum frequency and probability
max_language = max(detected_languages, key=key_func)
max_probability = sum(all_language_probabilities[max_language]) / len(
all_language_probabilities[max_language]
)
# Do additional checks for silence for non-confident case
# calculate RMS amplitude and DC offset
dc_offset = audio.mean()
audio_minus_dc_offset = audio - dc_offset
is_silent = (
torch.all(audio.abs() < 0.01)
or torch.sqrt(torch.mean(audio_minus_dc_offset**2)) < 0.01
)
if is_silent:
return {"language_code": None, "language_confidence": 1.0}
return {
"language_code": max_language,
"language_confidence": max_probability,
}
# Language is not detected for any segment and none of prev conditions met
return {"language_code": None, "language_confidence": 1.0}
def restore_speech_timestamps(
segments: Iterable[Segment],
speech_chunks: List[dict],
sampling_rate: int,
) -> Iterable[Segment]:
ts_map = SpeechTimestampsMap(speech_chunks, sampling_rate)
for segment in segments:
if segment.words:
words = []
for word in segment.words:
# Ensure the word start and end times are resolved to the same chunk.
middle = (word.start + word.end) / 2
chunk_index = ts_map.get_chunk_index(middle)
word = word._replace(
start=ts_map.get_original_time(word.start, chunk_index),
end=ts_map.get_original_time(word.end, chunk_index),
)
words.append(word)
segment = segment._replace(
start=words[0].start,
end=words[-1].end,
words=words,
)
else:
segment = segment._replace(
start=ts_map.get_original_time(segment.start),
end=ts_map.get_original_time(segment.end),
)
yield segment
def get_ctranslate2_storage(segment: torch.Tensor) -> ctranslate2.StorageView:
segment = segment.contiguous()
segment = ctranslate2.StorageView.from_array(
segment if segment.is_cuda else segment.numpy()
) # torch cpu tensors don't implement __array_interface__
# https://github.com/pytorch/pytorch/issues/51156
return segment
def get_compression_ratio(text: str) -> float:
text_bytes = text.encode("utf-8")
return len(text_bytes) / len(zlib.compress(text_bytes))
def get_suppressed_tokens(
tokenizer: Tokenizer,
suppress_tokens: Tuple[int],
) -> Optional[List[int]]:
if -1 in suppress_tokens:
suppress_tokens = [t for t in suppress_tokens if t >= 0]
suppress_tokens.extend(tokenizer.non_speech_tokens)
elif suppress_tokens is None or len(suppress_tokens) == 0:
suppress_tokens = [] # interpret empty string as an empty list
else:
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
suppress_tokens.extend(
[
tokenizer.transcribe,
tokenizer.translate,
tokenizer.sot,
tokenizer.sot_prev,
tokenizer.sot_lm,
]
)
return tuple(sorted(set(suppress_tokens)))
def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:
# merge prepended punctuations
i = len(alignment) - 2
j = len(alignment) - 1
while i >= 0:
previous = alignment[i]
following = alignment[j]
if previous["word"].startswith(" ") and previous["word"].strip() in prepended:
# prepend it to the following word
following["word"] = previous["word"] + following["word"]
if "tokens" in alignment[0].keys():
following["tokens"] = previous["tokens"] + following["tokens"]
previous["tokens"] = []
previous["word"] = ""
else:
j = i
i -= 1
# merge appended punctuations
i = 0
j = 1
while j < len(alignment):
previous = alignment[i]
following = alignment[j]
if not previous["word"].endswith(" ") and following["word"] in appended:
# append it to the previous word
previous["word"] = previous["word"] + following["word"]
if "tokens" in alignment[0].keys():
previous["tokens"] = previous["tokens"] + following["tokens"]
following["tokens"] = []
following["word"] = ""
else:
i = j
j += 1
|