File size: 8,859 Bytes
bc20498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Implemented by Zoe Xi @zoexi for GSOC 2016
// https://github.com/cytoscape/cytoscape.js-hierarchical

// Implemented from the reference library: https://harthur.github.io/clusterfck/

import * as util from '../../util';
import clusteringDistance from './clustering-distances';

const defaults = util.defaults({
  distance: 'euclidean', // distance metric to compare nodes
  linkage: 'min', // linkage criterion : how to determine the distance between clusters of nodes
  mode: 'threshold',
  // mode:'threshold' => clusters must be threshold distance apart
    threshold: Infinity, // the distance threshold
  // mode:'dendrogram' => the nodes are organised as leaves in a tree (siblings are close), merging makes clusters
    addDendrogram: false, // whether to add the dendrogram to the graph for viz
    dendrogramDepth: 0, // depth at which dendrogram branches are merged into the returned clusters
  attributes: [] // array of attr functions
});

const linkageAliases = {
  'single': 'min',
  'complete': 'max'
};

let setOptions = ( options ) => {
  let opts = defaults( options );

  let preferredAlias = linkageAliases[ opts.linkage ];

  if( preferredAlias != null ){
    opts.linkage = preferredAlias;
  }

  return opts;
};

let mergeClosest = function( clusters, index, dists, mins, opts ) {
  // Find two closest clusters from cached mins
  let minKey = 0;
  let min = Infinity;
  let dist;
  let attrs = opts.attributes;

  let getDist = (n1, n2) => clusteringDistance( opts.distance, attrs.length, i => attrs[i](n1), i => attrs[i](n2), n1, n2 );

  for ( let i = 0; i < clusters.length; i++ ) {
    let key  = clusters[i].key;
    let dist = dists[key][mins[key]];
    if ( dist < min ) {
      minKey = key;
      min = dist;
    }
  }
  if ( (opts.mode === 'threshold'  && min >= opts.threshold) ||
       (opts.mode === 'dendrogram' && clusters.length === 1) ) {
    return false;
  }

  let c1 = index[minKey];
  let c2 = index[mins[minKey]];
  let merged;

  // Merge two closest clusters
  if ( opts.mode === 'dendrogram' ) {
    merged = {
      left: c1,
      right: c2,
      key: c1.key
    };
  }
  else {
    merged = {
      value: c1.value.concat(c2.value),
      key: c1.key
    };
  }

  clusters[c1.index] = merged;
  clusters.splice(c2.index, 1);

  index[c1.key] = merged;

  // Update distances with new merged cluster
  for ( let i = 0; i < clusters.length; i++ ) {
    let cur = clusters[i];

    if ( c1.key === cur.key ) {
      dist = Infinity;
    }
    else if ( opts.linkage === 'min' ) {
      dist = dists[c1.key][cur.key];
      if ( dists[c1.key][cur.key] > dists[c2.key][cur.key] ) {
        dist = dists[c2.key][cur.key];
      }
    }
    else if ( opts.linkage === 'max' ) {
      dist = dists[c1.key][cur.key];
      if ( dists[c1.key][cur.key] < dists[c2.key][cur.key] ) {
        dist = dists[c2.key][cur.key];
      }
    }
    else if ( opts.linkage === 'mean' ) {
      dist = (dists[c1.key][cur.key] * c1.size + dists[c2.key][cur.key] * c2.size) / (c1.size + c2.size);
    }
    else {
      if ( opts.mode === 'dendrogram' )
        dist = getDist( cur.value, c1.value );
      else
        dist = getDist( cur.value[0], c1.value[0] );
    }

    dists[c1.key][cur.key] = dists[cur.key][c1.key] = dist; // distance matrix is symmetric
  }

  // Update cached mins
  for ( let i = 0; i < clusters.length; i++ ) {
    let key1 = clusters[i].key;
    if ( mins[key1] === c1.key || mins[key1] === c2.key ) {
      let min = key1;
      for ( let j = 0; j < clusters.length; j++ ) {
        let key2 = clusters[j].key;
        if ( dists[key1][key2] < dists[key1][min] ) {
          min = key2;
        }
      }
      mins[key1] = min;
    }
    clusters[i].index = i;
  }

  // Clean up meta data used for clustering
  c1.key = c2.key = c1.index = c2.index = null;

  return true;
};

let getAllChildren = function( root, arr, cy ) {

  if ( !root )
      return;

  if ( root.value ) {
    arr.push( root.value );
  }
  else {
    if ( root.left )
      getAllChildren( root.left, arr, cy );
    if ( root.right )
      getAllChildren( root.right, arr, cy );
  }
};

let buildDendrogram = function ( root, cy ) {

  if ( !root )
      return '';

  if ( root.left && root.right ) {

    let leftStr = buildDendrogram( root.left, cy );
    let rightStr = buildDendrogram( root.right, cy );

    let node = cy.add({group:'nodes', data: {id: leftStr + ',' + rightStr}});

    cy.add({group:'edges', data: { source: leftStr, target: node.id() }});
    cy.add({group:'edges', data: { source: rightStr, target: node.id() }});

    return node.id();
  }
  else if ( root.value ) {
    return root.value.id();
  }

};

let buildClustersFromTree = function( root, k, cy ) {

  if ( !root )
      return [];

  let left = [], right = [], leaves = [];

  if ( k === 0 ) { // don't cut tree, simply return all nodes as 1 single cluster
    if ( root.left )
      getAllChildren( root.left, left, cy );
    if ( root.right )
      getAllChildren( root.right, right, cy );

    leaves = left.concat(right);
    return [ cy.collection(leaves) ];
  }
  else if ( k === 1 ) { // cut at root

    if ( root.value ) { // leaf node
      return [ cy.collection( root.value ) ];
    }
    else {
      if ( root.left )
        getAllChildren( root.left, left, cy );
      if ( root.right )
        getAllChildren( root.right, right, cy );

      return [ cy.collection(left), cy.collection(right) ];
    }
  }
  else {
    if ( root.value ) {
      return [ cy.collection(root.value) ];
    }
    else {
      if ( root.left )
        left  = buildClustersFromTree( root.left, k - 1, cy );
      if ( root.right )
        right = buildClustersFromTree( root.right, k - 1, cy );

      return left.concat(right);
    }
  }
};

if( process.env.NODE_ENV !== 'production' ){ /* eslint-disable no-console, no-unused-vars */
  let printMatrix = function( M ) { // used for debugging purposes only
    let n = M.length;
    for(let i = 0; i < n; i++ ) {
      let row = '';
      for ( let j = 0; j < n; j++ ) {
        row += Math.round(M[i][j]*100)/100 + ' ';
      }
      console.log(row);
    }
    console.log('');
  };
} /* eslint-enable */

let hierarchicalClustering = function( options ){
  let cy    = this.cy();
  let nodes = this.nodes();

  // Set parameters of algorithm: linkage type, distance metric, etc.
  let opts = setOptions( options );

  let attrs = opts.attributes;
  let getDist = (n1, n2) => clusteringDistance( opts.distance, attrs.length, i => attrs[i](n1), i => attrs[i](n2), n1, n2 );

  // Begin hierarchical algorithm
  let clusters = [];
  let dists    = [];  // distances between each pair of clusters
  let mins     = [];  // closest cluster for each cluster
  let index    = [];  // hash of all clusters by key

  // In agglomerative (bottom-up) clustering, each node starts as its own cluster
  for ( let n = 0; n < nodes.length; n++ ) {
    let cluster = {
      value: (opts.mode === 'dendrogram') ? nodes[n] : [ nodes[n] ],
      key:   n,
      index: n
    };
    clusters[n] = cluster;
    index[n]    = cluster;
    dists[n]    = [];
    mins[n]     = 0;
  }

  // Calculate the distance between each pair of clusters
  for ( let i = 0; i < clusters.length; i++ ) {
    for ( let j = 0; j <= i; j++ ) {
      let dist;

      if ( opts.mode === 'dendrogram' ){ // modes store cluster values differently
        dist = (i === j) ? Infinity : getDist( clusters[i].value, clusters[j].value );
      } else {
        dist = (i === j) ? Infinity : getDist( clusters[i].value[0], clusters[j].value[0] );
      }

      dists[i][j] = dist;
      dists[j][i] = dist;

      if ( dist < dists[i][mins[i]] ) {
        mins[i] = j;  // Cache mins: closest cluster to cluster i is cluster j
      }
    }
  }

  // Find the closest pair of clusters and merge them into a single cluster.
  // Update distances between new cluster and each of the old clusters, and loop until threshold reached.
  let merged = mergeClosest( clusters, index, dists, mins, opts );
  while ( merged ) {
    merged = mergeClosest( clusters, index, dists, mins, opts );
  }

  let retClusters;

  // Dendrogram mode builds the hierarchy and adds intermediary nodes + edges
  // in addition to returning the clusters.
  if ( opts.mode === 'dendrogram') {
    retClusters = buildClustersFromTree( clusters[0], opts.dendrogramDepth, cy );

    if ( opts.addDendrogram )
      buildDendrogram( clusters[0], cy );
  }
  else { // Regular mode simply returns the clusters

    retClusters = new Array(clusters.length);
    clusters.forEach( function( cluster, i ) {
      // Clean up meta data used for clustering
      cluster.key = cluster.index = null;

      retClusters[i] = cy.collection( cluster.value );
    });
  }

  return retClusters;
};

export default { hierarchicalClustering, hca: hierarchicalClustering };