File size: 13,461 Bytes
bc20498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
// Implemented by Zoe Xi @zoexi for GSOC 2016
// https://github.com/cytoscape/cytoscape.js-k-means

// References for k-means: https://harthur.github.io/clusterfck/
// References for k-medoids: http://www.math.le.ac.uk/people/ag153/homepage/KmeansKmedoids/Kmeans_Kmedoids.html
// References for fuzzy c-means: Ross, Fuzzy Logic w/Engineering Applications (2010), pages 352-353
//                               http://yaikhom.com/2013/03/16/implementing-the-fuzzy-c-means-algorithm.html

import clusteringDistance from './clustering-distances';
import * as util from '../../util';

let defaults = util.defaults({
  k: 2,
  m: 2,
  sensitivityThreshold: 0.0001,
  distance: 'euclidean',
  maxIterations: 10,
  attributes: [],
  testMode: false,
  testCentroids: null
});

var setOptions = ( options ) => defaults( options );

if( process.env.NODE_ENV !== 'production' ){ /* eslint-disable no-console, no-unused-vars */
  var printMatrix = function( M ) { // used for debugging purposes only

    for ( let i = 0; i < M.length; i++ ) {
      let row = '';
      for ( let j = 0; j < M[0].length; j++ ) {
        row += Number(M[i][j]).toFixed(3) + ' ';
      }
      console.log(row);
    }
    console.log('');
  };
} /* eslint-enable */

let getDist = function(type, node, centroid, attributes, mode){
  let noNodeP = mode !== 'kMedoids';
  let getP = noNodeP ? ( i => centroid[i] ) : ( i => attributes[i](centroid) );
  let getQ = i => attributes[i](node);
  let nodeP = centroid;
  let nodeQ = node;

  return clusteringDistance( type, attributes.length, getP, getQ, nodeP, nodeQ );
};

let randomCentroids = function( nodes, k, attributes ) {
  let ndim = attributes.length;
  let min  = new Array(ndim);
  let max  = new Array(ndim);
  let centroids = new Array(k);
  let centroid  = null;

  // Find min, max values for each attribute dimension
  for ( let i = 0; i < ndim; i++ ) {
    min[i] = nodes.min( attributes[i] ).value;
    max[i] = nodes.max( attributes[i] ).value;
  }

  // Build k centroids, each represented as an n-dim feature vector
  for ( let c = 0; c < k; c++ ) {
    centroid = [];
    for ( let i = 0; i < ndim; i++ ) {
      centroid[i] = Math.random() * (max[i] - min[i]) + min[i]; // random initial value
    }
    centroids[c] = centroid;
  }

  return centroids;
};

let classify = function( node, centroids, distance, attributes, type ) {
  let min   = Infinity;
  let index = 0;

  for ( let i = 0; i < centroids.length; i++ ) {
    let dist = getDist( distance, node, centroids[i], attributes, type );
    if (dist < min) {
      min = dist;
      index = i;
    }
  }

  return index;
};

let buildCluster = function( centroid, nodes, assignment ) {
  let cluster = [];
  let node = null;

  for ( let n = 0; n < nodes.length; n++ ) {
    node = nodes[n];
    if ( assignment[ node.id() ] === centroid ) {
      //console.log("Node " + node.id() + " is associated with medoid #: " + m);
      cluster.push( node );
    }
  }
  return cluster;
};

let haveValuesConverged = function( v1, v2, sensitivityThreshold ){
  return Math.abs( v2 - v1 ) <= sensitivityThreshold;
};

let haveMatricesConverged = function( v1, v2, sensitivityThreshold ) {
  for ( let i = 0; i < v1.length; i++ ) {
    for (let j = 0; j < v1[i].length; j++ ) {
      let diff = Math.abs( v1[i][j] - v2[i][j] );

      if( diff > sensitivityThreshold ){ return false; }
    }
  }
  return true;
};

let seenBefore = function ( node, medoids, n ) {
  for ( let i = 0; i < n; i++ ) {
    if ( node === medoids[i] )
      return true;
  }
  return false;
};

let randomMedoids = function( nodes, k ) {
  let medoids = new Array(k);

  // For small data sets, the probability of medoid conflict is greater,
  // so we need to check to see if we've already seen or chose this node before.
  if (nodes.length < 50) {

    // Randomly select k medoids from the n nodes
    for (let i = 0; i < k; i++) {
      let node = nodes[ Math.floor( Math.random() * nodes.length ) ];

      // If we've already chosen this node to be a medoid, don't choose it again (for small data sets).
      // Instead choose a different random node.
      while ( seenBefore( node, medoids, i ) ) {
        node = nodes[ Math.floor( Math.random() * nodes.length ) ];
      }
      medoids[i] = node;
    }
  }
  else { // Relatively large data set, so pretty safe to not check and just select random nodes
    for (let i = 0; i < k; i++) {
      medoids[i] = nodes[ Math.floor( Math.random() * nodes.length ) ];
    }
  }
  return medoids;
};

let findCost = function( potentialNewMedoid, cluster, attributes ) {
  let cost = 0;
  for ( let n = 0; n < cluster.length; n++ ) {
    cost += getDist( 'manhattan', cluster[n], potentialNewMedoid, attributes, 'kMedoids' );
  }
  return cost;
};

let kMeans = function( options ){
  let cy    = this.cy();
  let nodes = this.nodes();
  let node  = null;

  // Set parameters of algorithm: # of clusters, distance metric, etc.
  let opts = setOptions( options );

  // Begin k-means algorithm
  let clusters   = new Array(opts.k);
  let assignment = {};
  let centroids;

  // Step 1: Initialize centroid positions
  if ( opts.testMode ) {
    if( typeof opts.testCentroids === 'number') {
      // TODO: implement a seeded random number generator.
      let seed  = opts.testCentroids;
      centroids = randomCentroids( nodes, opts.k, opts.attributes, seed );
    }
    else if ( typeof opts.testCentroids === 'object') {
      centroids = opts.testCentroids;
    }
    else {
      centroids = randomCentroids( nodes, opts.k, opts.attributes );
    }
  }
  else {
    centroids = randomCentroids( nodes, opts.k, opts.attributes );
  }

  let isStillMoving = true;
  let iterations = 0;

  while ( isStillMoving && iterations < opts.maxIterations ) {

    // Step 2: Assign nodes to the nearest centroid
    for ( let n = 0; n < nodes.length; n++ ) {
      node = nodes[n];
      // Determine which cluster this node belongs to: node id => cluster #
      assignment[ node.id() ] = classify( node, centroids, opts.distance, opts.attributes, 'kMeans' );
    }

    // Step 3: For each of the k clusters, update its centroid
    isStillMoving = false;
    for ( let c = 0; c < opts.k; c++ ) {

      // Get all nodes that belong to this cluster
      let cluster = buildCluster( c, nodes, assignment );

      if ( cluster.length === 0 ) { // If cluster is empty, break out early & move to next cluster
        continue;
      }

      // Update centroids by calculating avg of all nodes within the cluster.
      let ndim        = opts.attributes.length;
      let centroid    = centroids[c];           // [ dim_1, dim_2, dim_3, ... , dim_n ]
      let newCentroid = new Array(ndim);
      let sum         = new Array(ndim);

      for ( let d = 0; d < ndim; d++ ) {
        sum[d] = 0.0;
        for ( let i = 0; i < cluster.length; i++ ) {
          node = cluster[i];
          sum[d] += opts.attributes[d](node);
        }
        newCentroid[d] = sum[d] / cluster.length;

        // Check to see if algorithm has converged, i.e. when centroids no longer change
        if ( !haveValuesConverged(newCentroid[d], centroid[d], opts.sensitivityThreshold) ) {
          isStillMoving = true;
        }
      }

      centroids[c] = newCentroid;
      clusters[c]  = cy.collection( cluster );
    }

    iterations++;
  }

  return clusters;
};

let kMedoids = function( options ) {
  let cy    = this.cy();
  let nodes = this.nodes();
  let node  = null;
  let opts  = setOptions( options );

  // Begin k-medoids algorithm
  let clusters = new Array(opts.k);
  let medoids;
  let assignment = {};
  let curCost;
  let minCosts = new Array(opts.k);    // minimum cost configuration for each cluster

  // Step 1: Initialize k medoids
  if ( opts.testMode ) {
    if( typeof opts.testCentroids === 'number') {
      // TODO: implement random generator so user can just input seed number
    }
    else if ( typeof opts.testCentroids === 'object') {
      medoids = opts.testCentroids;
    }
    else {
      medoids = randomMedoids(nodes, opts.k);
    }
  }
  else {
    medoids = randomMedoids(nodes, opts.k);
  }

  let isStillMoving = true;
  let iterations = 0;

  while ( isStillMoving && iterations < opts.maxIterations ) {

    // Step 2: Assign nodes to the nearest medoid
    for ( let n = 0; n < nodes.length; n++ ) {
      node = nodes[n];
      // Determine which cluster this node belongs to: node id => cluster #
      assignment[ node.id() ] = classify( node, medoids, opts.distance, opts.attributes, 'kMedoids' );
    }

    isStillMoving = false;
    // Step 3: For each medoid m, and for each node associated with mediod m,
    // select the node with the lowest configuration cost as new medoid.
    for ( let m = 0; m < medoids.length; m++ ) {

      // Get all nodes that belong to this medoid
      let cluster = buildCluster( m, nodes, assignment );

      if ( cluster.length === 0 ) { // If cluster is empty, break out early & move to next cluster
        continue;
      }

      minCosts[m] = findCost( medoids[m], cluster, opts.attributes ); // original cost

      // Select different medoid if its configuration has the lowest cost
      for ( let n = 0; n < cluster.length; n++ ) {
        curCost = findCost( cluster[n], cluster, opts.attributes );
        if ( curCost < minCosts[m] ) {
          minCosts[m] = curCost;
          medoids[m]  = cluster[n];
          isStillMoving = true;
        }
      }

      clusters[m] = cy.collection( cluster );
    }

    iterations++;
  }

  return clusters;
};

let updateCentroids = function( centroids, nodes, U, weight, opts ) {
  let numerator, denominator;

  for ( let n = 0; n < nodes.length; n++ ) {
    for ( let c = 0; c < centroids.length; c++ ) {
      weight[n][c] = Math.pow( U[n][c], opts.m );
    }
  }

  for ( let c = 0; c < centroids.length; c++ ) {
    for ( let dim = 0; dim < opts.attributes.length; dim++ ) {
      numerator   = 0;
      denominator = 0;
      for ( let n = 0; n < nodes.length; n++ ) {
        numerator   += weight[n][c] * opts.attributes[dim](nodes[n]);
        denominator += weight[n][c];
      }
      centroids[c][dim] = numerator / denominator;
    }
  }
};

let updateMembership = function( U, _U, centroids, nodes, opts ) {
  // Save previous step
  for (let i = 0; i < U.length; i++) {
    _U[i] = U[i].slice();
  }

  let sum, numerator, denominator;
  let pow = 2 / (opts.m - 1);

  for ( let c = 0; c < centroids.length; c++ ) {
    for ( let n = 0; n < nodes.length; n++ ) {

      sum = 0;
      for ( let k = 0; k < centroids.length; k++ ) { // against all other centroids
        numerator   = getDist( opts.distance,  nodes[n], centroids[c], opts.attributes, 'cmeans' );
        denominator = getDist( opts.distance,  nodes[n], centroids[k], opts.attributes, 'cmeans' );
        sum += Math.pow( numerator / denominator, pow );
      }
      U[n][c] = 1 / sum;
    }
  }
};

let assign = function( nodes, U, opts, cy ) {
  let clusters = new Array(opts.k);
  for ( let c = 0; c < clusters.length; c++ ) {
    clusters[c] = [];
  }

  let max;
  let index;
  for ( let n = 0; n < U.length; n++ ) { // for each node (U is N x C matrix)
    max   = -Infinity;
    index = -1;
    // Determine which cluster the node is most likely to belong in
    for ( let c = 0; c < U[0].length; c++ ) {
      if ( U[n][c] > max ) {
        max = U[n][c];
        index = c;
      }
    }
    clusters[index].push( nodes[n] );
  }

  // Turn every array into a collection of nodes
  for ( let c = 0; c < clusters.length; c++ ) {
    clusters[c] = cy.collection( clusters[c] );
  }
  return clusters;
};

let fuzzyCMeans = function( options ) {
  let cy    = this.cy();
  let nodes = this.nodes();
  let opts  = setOptions( options );

  // Begin fuzzy c-means algorithm
  let clusters;
  let centroids;
  let U;
  let _U;
  let weight;

  // Step 1: Initialize letiables.
  _U = new Array(nodes.length);
  for ( let i = 0; i < nodes.length; i++ ) { // N x C matrix
    _U[i] = new Array(opts.k);
  }

  U = new Array(nodes.length);
  for ( let i = 0; i < nodes.length; i++ ) { // N x C matrix
    U[i] = new Array(opts.k);
  }

  for (let i = 0; i < nodes.length; i++) {
    let total = 0;
    for (let j = 0; j < opts.k; j++) {
      U[i][j] = Math.random();
      total += U[i][j];
    }
    for (let j = 0; j < opts.k; j++) {
      U[i][j] = U[i][j] / total;
    }
  }

  centroids = new Array(opts.k);
  for ( let i = 0; i < opts.k; i++ ) {
    centroids[i] = new Array(opts.attributes.length);
  }

  weight = new Array(nodes.length);
  for ( let i = 0; i < nodes.length; i++ ) { // N x C matrix
    weight[i] = new Array(opts.k);
  }
  // end init FCM

  let isStillMoving = true;
  let iterations = 0;

  while ( isStillMoving && iterations < opts.maxIterations ) {
    isStillMoving = false;

    // Step 2: Calculate the centroids for each step.
    updateCentroids( centroids, nodes, U, weight, opts );

    // Step 3: Update the partition matrix U.
    updateMembership( U, _U, centroids, nodes, opts );

    // Step 4: Check for convergence.
    if ( !haveMatricesConverged( U, _U, opts.sensitivityThreshold ) ) {
      isStillMoving = true;
    }

    iterations++;
  }

  // Assign nodes to clusters with highest probability.
  clusters = assign( nodes, U, opts, cy );

  return {
    clusters: clusters,
    degreeOfMembership: U
  };
};

export default {
  kMeans, kMedoids, fuzzyCMeans, fcm: fuzzyCMeans
};