File size: 10,856 Bytes
bc20498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import * as util from '../../util';
import * as math from '../../math';
import * as is from '../../is';
/* eslint-disable no-unused-vars */
const defaults = {
fit: true, // whether to fit the viewport to the graph
directed: false, // whether the tree is directed downwards (or edges can point in any direction if false)
padding: 30, // padding on fit
circle: false, // put depths in concentric circles if true, put depths top down if false
grid: false, // whether to create an even grid into which the DAG is placed (circle:false only)
spacingFactor: 1.75, // positive spacing factor, larger => more space between nodes (N.B. n/a if causes overlap)
boundingBox: undefined, // constrain layout bounds; { x1, y1, x2, y2 } or { x1, y1, w, h }
avoidOverlap: true, // prevents node overlap, may overflow boundingBox if not enough space
nodeDimensionsIncludeLabels: false, // Excludes the label when calculating node bounding boxes for the layout algorithm
roots: undefined, // the roots of the trees
depthSort: undefined, // a sorting function to order nodes at equal depth. e.g. function(a, b){ return a.data('weight') - b.data('weight') }
animate: false, // whether to transition the node positions
animationDuration: 500, // duration of animation in ms if enabled
animationEasing: undefined, // easing of animation if enabled,
animateFilter: function ( node, i ){ return true; }, // a function that determines whether the node should be animated. All nodes animated by default on animate enabled. Non-animated nodes are positioned immediately when the layout starts
ready: undefined, // callback on layoutready
stop: undefined, // callback on layoutstop
transform: function (node, position ){ return position; } // transform a given node position. Useful for changing flow direction in discrete layouts
};
const deprecatedOptionDefaults = {
maximal: false, // whether to shift nodes down their natural BFS depths in order to avoid upwards edges (DAGS only); setting acyclic to true sets maximal to true also
acyclic: false, // whether the tree is acyclic and thus a node could be shifted (due to the maximal option) multiple times without causing an infinite loop; setting to true sets maximal to true also; if you are uncertain whether a tree is acyclic, set to false to avoid potential infinite loops
};
/* eslint-enable */
const getInfo = ele => ele.scratch('breadthfirst');
const setInfo = (ele, obj) => ele.scratch('breadthfirst', obj);
function BreadthFirstLayout( options ){
this.options = util.extend( {}, defaults, deprecatedOptionDefaults, options );
}
BreadthFirstLayout.prototype.run = function(){
let params = this.options;
let options = params;
let cy = params.cy;
let eles = options.eles;
let nodes = eles.nodes().filter( n => !n.isParent() );
let graph = eles;
let directed = options.directed;
let maximal = options.acyclic || options.maximal || options.maximalAdjustments > 0; // maximalAdjustments for compat. w/ old code; also, setting acyclic to true sets maximal to true
let bb = math.makeBoundingBox( options.boundingBox ? options.boundingBox : {
x1: 0, y1: 0, w: cy.width(), h: cy.height()
} );
let roots;
if( is.elementOrCollection( options.roots ) ){
roots = options.roots;
} else if( is.array( options.roots ) ){
let rootsArray = [];
for( let i = 0; i < options.roots.length; i++ ){
let id = options.roots[ i ];
let ele = cy.getElementById( id );
rootsArray.push( ele );
}
roots = cy.collection( rootsArray );
} else if( is.string( options.roots ) ){
roots = cy.$( options.roots );
} else {
if( directed ){
roots = nodes.roots();
} else {
let components = eles.components();
roots = cy.collection();
for( let i = 0; i < components.length; i++ ){
let comp = components[i];
let maxDegree = comp.maxDegree( false );
let compRoots = comp.filter( function( ele ){
return ele.degree( false ) === maxDegree;
} );
roots = roots.add( compRoots );
}
}
}
let depths = [];
let foundByBfs = {};
let addToDepth = ( ele, d ) => {
if( depths[d] == null ){
depths[d] = [];
}
let i = depths[d].length;
depths[d].push( ele );
setInfo( ele, {
index: i,
depth: d
} );
};
let changeDepth = ( ele, newDepth ) => {
let { depth, index } = getInfo( ele );
depths[ depth ][ index ] = null;
addToDepth( ele, newDepth );
};
// find the depths of the nodes
graph.bfs( {
roots: roots,
directed: options.directed,
visit: function( node, edge, pNode, i, depth ){
let ele = node[0];
let id = ele.id();
addToDepth( ele, depth );
foundByBfs[ id ] = true;
}
} );
// check for nodes not found by bfs
let orphanNodes = [];
for( let i = 0; i < nodes.length; i++ ){
let ele = nodes[ i ];
if( foundByBfs[ ele.id() ] ){
continue;
} else {
orphanNodes.push( ele );
}
}
// assign the nodes a depth and index
let assignDepthsAt = function( i ){
let eles = depths[ i ];
for( let j = 0; j < eles.length; j++ ){
let ele = eles[ j ];
if( ele == null ){
eles.splice( j, 1 );
j--;
continue;
}
setInfo(ele, {
depth: i,
index: j
});
}
};
let assignDepths = function(){
for( let i = 0; i < depths.length; i++ ){
assignDepthsAt( i );
}
};
let adjustMaximally = function( ele, shifted ){
let eInfo = getInfo( ele );
let incomers = ele.incomers().filter( el => el.isNode() && eles.has(el) );
let maxDepth = -1;
let id = ele.id();
for( let k = 0; k < incomers.length; k++ ){
let incmr = incomers[k];
let iInfo = getInfo( incmr );
maxDepth = Math.max( maxDepth, iInfo.depth );
}
if( eInfo.depth <= maxDepth ){
if( !options.acyclic && shifted[id] ){
return null;
}
let newDepth = maxDepth + 1;
changeDepth( ele, newDepth );
shifted[id] = newDepth;
return true;
}
return false;
};
// for the directed case, try to make the edges all go down (i.e. depth i => depth i + 1)
if( directed && maximal ){
let Q = [];
let shifted = {};
let enqueue = n => Q.push(n);
let dequeue = () => Q.shift();
nodes.forEach( n => Q.push(n) );
while( Q.length > 0 ){
let ele = dequeue();
let didShift = adjustMaximally( ele, shifted );
if( didShift ){
ele.outgoers().filter( el => el.isNode() && eles.has(el) ).forEach( enqueue );
} else if( didShift === null ){
util.warn('Detected double maximal shift for node `' + ele.id() + '`. Bailing maximal adjustment due to cycle. Use `options.maximal: true` only on DAGs.');
break; // exit on failure
}
}
}
assignDepths(); // clear holes
// find min distance we need to leave between nodes
let minDistance = 0;
if( options.avoidOverlap ){
for( let i = 0; i < nodes.length; i++ ){
let n = nodes[ i ];
let nbb = n.layoutDimensions( options );
let w = nbb.w;
let h = nbb.h;
minDistance = Math.max( minDistance, w, h );
}
}
// get the weighted percent for an element based on its connectivity to other levels
let cachedWeightedPercent = {};
let getWeightedPercent = function( ele ){
if( cachedWeightedPercent[ ele.id() ] ){
return cachedWeightedPercent[ ele.id() ];
}
let eleDepth = getInfo( ele ).depth;
let neighbors = ele.neighborhood();
let percent = 0;
let samples = 0;
for( let i = 0; i < neighbors.length; i++ ){
let neighbor = neighbors[ i ];
if( neighbor.isEdge() || neighbor.isParent() || !nodes.has( neighbor ) ){
continue;
}
let bf = getInfo( neighbor );
if (bf == null){ continue; }
let index = bf.index;
let depth = bf.depth;
// unassigned neighbours shouldn't affect the ordering
if( index == null || depth == null ){
continue;
}
let nDepth = depths[ depth ].length;
if( depth < eleDepth ){ // only get influenced by elements above
percent += index / nDepth;
samples++;
}
}
samples = Math.max( 1, samples );
percent = percent / samples;
if( samples === 0 ){ // put lone nodes at the start
percent = 0;
}
cachedWeightedPercent[ ele.id() ] = percent;
return percent;
};
// rearrange the indices in each depth level based on connectivity
let sortFn = function( a, b ){
let apct = getWeightedPercent( a );
let bpct = getWeightedPercent( b );
let diff = apct - bpct;
if( diff === 0 ){
return util.sort.ascending( a.id(), b.id() ); // make sure sort doesn't have don't-care comparisons
} else {
return diff;
}
};
if (options.depthSort !== undefined) {
sortFn = options.depthSort;
}
// sort each level to make connected nodes closer
for( let i = 0; i < depths.length; i++ ){
depths[ i ].sort( sortFn );
assignDepthsAt( i );
}
// assign orphan nodes to a new top-level depth
let orphanDepth = [];
for( let i = 0; i < orphanNodes.length; i++ ){
orphanDepth.push( orphanNodes[i] );
}
depths.unshift( orphanDepth );
assignDepths();
let biggestDepthSize = 0;
for( let i = 0; i < depths.length; i++ ){
biggestDepthSize = Math.max( depths[ i ].length, biggestDepthSize );
}
let center = {
x: bb.x1 + bb.w / 2,
y: bb.x1 + bb.h / 2
};
let maxDepthSize = depths.reduce( (max, eles) => Math.max(max, eles.length), 0 );
let getPosition = function( ele ){
let { depth, index } = getInfo( ele );
let depthSize = depths[ depth ].length;
let distanceX = Math.max( bb.w / ( (options.grid ? maxDepthSize : depthSize) + 1 ), minDistance );
let distanceY = Math.max( bb.h / (depths.length + 1), minDistance );
let radiusStepSize = Math.min( bb.w / 2 / depths.length, bb.h / 2 / depths.length );
radiusStepSize = Math.max( radiusStepSize, minDistance );
if( !options.circle ){
let epos = {
x: center.x + (index + 1 - (depthSize + 1) / 2) * distanceX,
y: (depth + 1) * distanceY
};
return epos;
} else {
let radius = radiusStepSize * depth + radiusStepSize - (depths.length > 0 && depths[0].length <= 3 ? radiusStepSize / 2 : 0);
let theta = 2 * Math.PI / depths[ depth ].length * index;
if( depth === 0 && depths[0].length === 1 ){
radius = 1;
}
return {
x: center.x + radius * Math.cos( theta ),
y: center.y + radius * Math.sin( theta )
};
}
};
eles.nodes().layoutPositions( this, options, getPosition );
return this; // chaining
};
export default BreadthFirstLayout;
|