File size: 7,063 Bytes
bc20498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import {Node} from "./hierarchy/index.js";
function defaultSeparation(a, b) {
return a.parent === b.parent ? 1 : 2;
}
// function radialSeparation(a, b) {
// return (a.parent === b.parent ? 1 : 2) / a.depth;
// }
// This function is used to traverse the left contour of a subtree (or
// subforest). It returns the successor of v on this contour. This successor is
// either given by the leftmost child of v or by the thread of v. The function
// returns null if and only if v is on the highest level of its subtree.
function nextLeft(v) {
var children = v.children;
return children ? children[0] : v.t;
}
// This function works analogously to nextLeft.
function nextRight(v) {
var children = v.children;
return children ? children[children.length - 1] : v.t;
}
// Shifts the current subtree rooted at w+. This is done by increasing
// prelim(w+) and mod(w+) by shift.
function moveSubtree(wm, wp, shift) {
var change = shift / (wp.i - wm.i);
wp.c -= change;
wp.s += shift;
wm.c += change;
wp.z += shift;
wp.m += shift;
}
// All other shifts, applied to the smaller subtrees between w- and w+, are
// performed by this function. To prepare the shifts, we have to adjust
// change(w+), shift(w+), and change(w-).
function executeShifts(v) {
var shift = 0,
change = 0,
children = v.children,
i = children.length,
w;
while (--i >= 0) {
w = children[i];
w.z += shift;
w.m += shift;
shift += w.s + (change += w.c);
}
}
// If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise,
// returns the specified (default) ancestor.
function nextAncestor(vim, v, ancestor) {
return vim.a.parent === v.parent ? vim.a : ancestor;
}
function TreeNode(node, i) {
this._ = node;
this.parent = null;
this.children = null;
this.A = null; // default ancestor
this.a = this; // ancestor
this.z = 0; // prelim
this.m = 0; // mod
this.c = 0; // change
this.s = 0; // shift
this.t = null; // thread
this.i = i; // number
}
TreeNode.prototype = Object.create(Node.prototype);
function treeRoot(root) {
var tree = new TreeNode(root, 0),
node,
nodes = [tree],
child,
children,
i,
n;
while (node = nodes.pop()) {
if (children = node._.children) {
node.children = new Array(n = children.length);
for (i = n - 1; i >= 0; --i) {
nodes.push(child = node.children[i] = new TreeNode(children[i], i));
child.parent = node;
}
}
}
(tree.parent = new TreeNode(null, 0)).children = [tree];
return tree;
}
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
export default function() {
var separation = defaultSeparation,
dx = 1,
dy = 1,
nodeSize = null;
function tree(root) {
var t = treeRoot(root);
// Compute the layout using Buchheim et al.’s algorithm.
t.eachAfter(firstWalk), t.parent.m = -t.z;
t.eachBefore(secondWalk);
// If a fixed node size is specified, scale x and y.
if (nodeSize) root.eachBefore(sizeNode);
// If a fixed tree size is specified, scale x and y based on the extent.
// Compute the left-most, right-most, and depth-most nodes for extents.
else {
var left = root,
right = root,
bottom = root;
root.eachBefore(function(node) {
if (node.x < left.x) left = node;
if (node.x > right.x) right = node;
if (node.depth > bottom.depth) bottom = node;
});
var s = left === right ? 1 : separation(left, right) / 2,
tx = s - left.x,
kx = dx / (right.x + s + tx),
ky = dy / (bottom.depth || 1);
root.eachBefore(function(node) {
node.x = (node.x + tx) * kx;
node.y = node.depth * ky;
});
}
return root;
}
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
// applied recursively to the children of v, as well as the function
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
// node v is placed to the midpoint of its outermost children.
function firstWalk(v) {
var children = v.children,
siblings = v.parent.children,
w = v.i ? siblings[v.i - 1] : null;
if (children) {
executeShifts(v);
var midpoint = (children[0].z + children[children.length - 1].z) / 2;
if (w) {
v.z = w.z + separation(v._, w._);
v.m = v.z - midpoint;
} else {
v.z = midpoint;
}
} else if (w) {
v.z = w.z + separation(v._, w._);
}
v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
}
// Computes all real x-coordinates by summing up the modifiers recursively.
function secondWalk(v) {
v._.x = v.z + v.parent.m;
v.m += v.parent.m;
}
// The core of the algorithm. Here, a new subtree is combined with the
// previous subtrees. Threads are used to traverse the inside and outside
// contours of the left and right subtree up to the highest common level. The
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
// superscript o means outside and i means inside, the subscript - means left
// subtree and + means right subtree. For summing up the modifiers along the
// contour, we use respective variables si+, si-, so-, and so+. Whenever two
// nodes of the inside contours conflict, we compute the left one of the
// greatest uncommon ancestors using the function ANCESTOR and call MOVE
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
// Finally, we add a new thread (if necessary).
function apportion(v, w, ancestor) {
if (w) {
var vip = v,
vop = v,
vim = w,
vom = vip.parent.children[0],
sip = vip.m,
sop = vop.m,
sim = vim.m,
som = vom.m,
shift;
while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) {
vom = nextLeft(vom);
vop = nextRight(vop);
vop.a = v;
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
if (shift > 0) {
moveSubtree(nextAncestor(vim, v, ancestor), v, shift);
sip += shift;
sop += shift;
}
sim += vim.m;
sip += vip.m;
som += vom.m;
sop += vop.m;
}
if (vim && !nextRight(vop)) {
vop.t = vim;
vop.m += sim - sop;
}
if (vip && !nextLeft(vom)) {
vom.t = vip;
vom.m += sip - som;
ancestor = v;
}
}
return ancestor;
}
function sizeNode(node) {
node.x *= dx;
node.y = node.depth * dy;
}
tree.separation = function(x) {
return arguments.length ? (separation = x, tree) : separation;
};
tree.size = function(x) {
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]);
};
tree.nodeSize = function(x) {
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null);
};
return tree;
}
|