File size: 5,013 Bytes
bc20498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// https://d3js.org/d3-path/ v3.1.0 Copyright 2015-2022 Mike Bostock
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
})(this, (function (exports) { 'use strict';

const pi = Math.PI,
    tau = 2 * pi,
    epsilon = 1e-6,
    tauEpsilon = tau - epsilon;

function append(strings) {
  this._ += strings[0];
  for (let i = 1, n = strings.length; i < n; ++i) {
    this._ += arguments[i] + strings[i];
  }
}

function appendRound(digits) {
  let d = Math.floor(digits);
  if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);
  if (d > 15) return append;
  const k = 10 ** d;
  return function(strings) {
    this._ += strings[0];
    for (let i = 1, n = strings.length; i < n; ++i) {
      this._ += Math.round(arguments[i] * k) / k + strings[i];
    }
  };
}

class Path {
  constructor(digits) {
    this._x0 = this._y0 = // start of current subpath
    this._x1 = this._y1 = null; // end of current subpath
    this._ = "";
    this._append = digits == null ? append : appendRound(digits);
  }
  moveTo(x, y) {
    this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
  }
  closePath() {
    if (this._x1 !== null) {
      this._x1 = this._x0, this._y1 = this._y0;
      this._append`Z`;
    }
  }
  lineTo(x, y) {
    this._append`L${this._x1 = +x},${this._y1 = +y}`;
  }
  quadraticCurveTo(x1, y1, x, y) {
    this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;
  }
  bezierCurveTo(x1, y1, x2, y2, x, y) {
    this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;
  }
  arcTo(x1, y1, x2, y2, r) {
    x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;

    // Is the radius negative? Error.
    if (r < 0) throw new Error(`negative radius: ${r}`);

    let x0 = this._x1,
        y0 = this._y1,
        x21 = x2 - x1,
        y21 = y2 - y1,
        x01 = x0 - x1,
        y01 = y0 - y1,
        l01_2 = x01 * x01 + y01 * y01;

    // Is this path empty? Move to (x1,y1).
    if (this._x1 === null) {
      this._append`M${this._x1 = x1},${this._y1 = y1}`;
    }

    // Or, is (x1,y1) coincident with (x0,y0)? Do nothing.
    else if (!(l01_2 > epsilon));

    // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?
    // Equivalently, is (x1,y1) coincident with (x2,y2)?
    // Or, is the radius zero? Line to (x1,y1).
    else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {
      this._append`L${this._x1 = x1},${this._y1 = y1}`;
    }

    // Otherwise, draw an arc!
    else {
      let x20 = x2 - x0,
          y20 = y2 - y0,
          l21_2 = x21 * x21 + y21 * y21,
          l20_2 = x20 * x20 + y20 * y20,
          l21 = Math.sqrt(l21_2),
          l01 = Math.sqrt(l01_2),
          l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),
          t01 = l / l01,
          t21 = l / l21;

      // If the start tangent is not coincident with (x0,y0), line to.
      if (Math.abs(t01 - 1) > epsilon) {
        this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;
      }

      this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;
    }
  }
  arc(x, y, r, a0, a1, ccw) {
    x = +x, y = +y, r = +r, ccw = !!ccw;

    // Is the radius negative? Error.
    if (r < 0) throw new Error(`negative radius: ${r}`);

    let dx = r * Math.cos(a0),
        dy = r * Math.sin(a0),
        x0 = x + dx,
        y0 = y + dy,
        cw = 1 ^ ccw,
        da = ccw ? a0 - a1 : a1 - a0;

    // Is this path empty? Move to (x0,y0).
    if (this._x1 === null) {
      this._append`M${x0},${y0}`;
    }

    // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).
    else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {
      this._append`L${x0},${y0}`;
    }

    // Is this arc empty? We’re done.
    if (!r) return;

    // Does the angle go the wrong way? Flip the direction.
    if (da < 0) da = da % tau + tau;

    // Is this a complete circle? Draw two arcs to complete the circle.
    if (da > tauEpsilon) {
      this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;
    }

    // Is this arc non-empty? Draw an arc!
    else if (da > epsilon) {
      this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;
    }
  }
  rect(x, y, w, h) {
    this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;
  }
  toString() {
    return this._;
  }
}

function path() {
  return new Path;
}

// Allow instanceof d3.path
path.prototype = Path.prototype;

function pathRound(digits = 3) {
  return new Path(+digits);
}

exports.Path = Path;
exports.path = path;
exports.pathRound = pathRound;

}));