File size: 81,390 Bytes
bc20498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
'use strict';

/**
The default maximum length of a `TreeBuffer` node.
*/
const DefaultBufferLength = 1024;
let nextPropID = 0;
class Range {
    constructor(from, to) {
        this.from = from;
        this.to = to;
    }
}
/**
Each [node type](#common.NodeType) or [individual tree](#common.Tree)
can have metadata associated with it in props. Instances of this
class represent prop names.
*/
class NodeProp {
    /**
    Create a new node prop type.
    */
    constructor(config = {}) {
        this.id = nextPropID++;
        this.perNode = !!config.perNode;
        this.deserialize = config.deserialize || (() => {
            throw new Error("This node type doesn't define a deserialize function");
        });
    }
    /**
    This is meant to be used with
    [`NodeSet.extend`](#common.NodeSet.extend) or
    [`LRParser.configure`](#lr.ParserConfig.props) to compute
    prop values for each node type in the set. Takes a [match
    object](#common.NodeType^match) or function that returns undefined
    if the node type doesn't get this prop, and the prop's value if
    it does.
    */
    add(match) {
        if (this.perNode)
            throw new RangeError("Can't add per-node props to node types");
        if (typeof match != "function")
            match = NodeType.match(match);
        return (type) => {
            let result = match(type);
            return result === undefined ? null : [this, result];
        };
    }
}
/**
Prop that is used to describe matching delimiters. For opening
delimiters, this holds an array of node names (written as a
space-separated string when declaring this prop in a grammar)
for the node types of closing delimiters that match it.
*/
NodeProp.closedBy = new NodeProp({ deserialize: str => str.split(" ") });
/**
The inverse of [`closedBy`](#common.NodeProp^closedBy). This is
attached to closing delimiters, holding an array of node names
of types of matching opening delimiters.
*/
NodeProp.openedBy = new NodeProp({ deserialize: str => str.split(" ") });
/**
Used to assign node types to groups (for example, all node
types that represent an expression could be tagged with an
`"Expression"` group).
*/
NodeProp.group = new NodeProp({ deserialize: str => str.split(" ") });
/**
Attached to nodes to indicate these should be
[displayed](https://codemirror.net/docs/ref/#language.syntaxTree)
in a bidirectional text isolate, so that direction-neutral
characters on their sides don't incorrectly get associated with
surrounding text. You'll generally want to set this for nodes
that contain arbitrary text, like strings and comments, and for
nodes that appear _inside_ arbitrary text, like HTML tags. When
not given a value, in a grammar declaration, defaults to
`"auto"`.
*/
NodeProp.isolate = new NodeProp({ deserialize: value => {
        if (value && value != "rtl" && value != "ltr" && value != "auto")
            throw new RangeError("Invalid value for isolate: " + value);
        return value || "auto";
    } });
/**
The hash of the [context](#lr.ContextTracker.constructor)
that the node was parsed in, if any. Used to limit reuse of
contextual nodes.
*/
NodeProp.contextHash = new NodeProp({ perNode: true });
/**
The distance beyond the end of the node that the tokenizer
looked ahead for any of the tokens inside the node. (The LR
parser only stores this when it is larger than 25, for
efficiency reasons.)
*/
NodeProp.lookAhead = new NodeProp({ perNode: true });
/**
This per-node prop is used to replace a given node, or part of a
node, with another tree. This is useful to include trees from
different languages in mixed-language parsers.
*/
NodeProp.mounted = new NodeProp({ perNode: true });
/**
A mounted tree, which can be [stored](#common.NodeProp^mounted) on
a tree node to indicate that parts of its content are
represented by another tree.
*/
class MountedTree {
    constructor(
    /**
    The inner tree.
    */
    tree, 
    /**
    If this is null, this tree replaces the entire node (it will
    be included in the regular iteration instead of its host
    node). If not, only the given ranges are considered to be
    covered by this tree. This is used for trees that are mixed in
    a way that isn't strictly hierarchical. Such mounted trees are
    only entered by [`resolveInner`](#common.Tree.resolveInner)
    and [`enter`](#common.SyntaxNode.enter).
    */
    overlay, 
    /**
    The parser used to create this subtree.
    */
    parser) {
        this.tree = tree;
        this.overlay = overlay;
        this.parser = parser;
    }
    /**
    @internal
    */
    static get(tree) {
        return tree && tree.props && tree.props[NodeProp.mounted.id];
    }
}
const noProps = Object.create(null);
/**
Each node in a syntax tree has a node type associated with it.
*/
class NodeType {
    /**
    @internal
    */
    constructor(
    /**
    The name of the node type. Not necessarily unique, but if the
    grammar was written properly, different node types with the
    same name within a node set should play the same semantic
    role.
    */
    name, 
    /**
    @internal
    */
    props, 
    /**
    The id of this node in its set. Corresponds to the term ids
    used in the parser.
    */
    id, 
    /**
    @internal
    */
    flags = 0) {
        this.name = name;
        this.props = props;
        this.id = id;
        this.flags = flags;
    }
    /**
    Define a node type.
    */
    static define(spec) {
        let props = spec.props && spec.props.length ? Object.create(null) : noProps;
        let flags = (spec.top ? 1 /* NodeFlag.Top */ : 0) | (spec.skipped ? 2 /* NodeFlag.Skipped */ : 0) |
            (spec.error ? 4 /* NodeFlag.Error */ : 0) | (spec.name == null ? 8 /* NodeFlag.Anonymous */ : 0);
        let type = new NodeType(spec.name || "", props, spec.id, flags);
        if (spec.props)
            for (let src of spec.props) {
                if (!Array.isArray(src))
                    src = src(type);
                if (src) {
                    if (src[0].perNode)
                        throw new RangeError("Can't store a per-node prop on a node type");
                    props[src[0].id] = src[1];
                }
            }
        return type;
    }
    /**
    Retrieves a node prop for this type. Will return `undefined` if
    the prop isn't present on this node.
    */
    prop(prop) { return this.props[prop.id]; }
    /**
    True when this is the top node of a grammar.
    */
    get isTop() { return (this.flags & 1 /* NodeFlag.Top */) > 0; }
    /**
    True when this node is produced by a skip rule.
    */
    get isSkipped() { return (this.flags & 2 /* NodeFlag.Skipped */) > 0; }
    /**
    Indicates whether this is an error node.
    */
    get isError() { return (this.flags & 4 /* NodeFlag.Error */) > 0; }
    /**
    When true, this node type doesn't correspond to a user-declared
    named node, for example because it is used to cache repetition.
    */
    get isAnonymous() { return (this.flags & 8 /* NodeFlag.Anonymous */) > 0; }
    /**
    Returns true when this node's name or one of its
    [groups](#common.NodeProp^group) matches the given string.
    */
    is(name) {
        if (typeof name == 'string') {
            if (this.name == name)
                return true;
            let group = this.prop(NodeProp.group);
            return group ? group.indexOf(name) > -1 : false;
        }
        return this.id == name;
    }
    /**
    Create a function from node types to arbitrary values by
    specifying an object whose property names are node or
    [group](#common.NodeProp^group) names. Often useful with
    [`NodeProp.add`](#common.NodeProp.add). You can put multiple
    names, separated by spaces, in a single property name to map
    multiple node names to a single value.
    */
    static match(map) {
        let direct = Object.create(null);
        for (let prop in map)
            for (let name of prop.split(" "))
                direct[name] = map[prop];
        return (node) => {
            for (let groups = node.prop(NodeProp.group), i = -1; i < (groups ? groups.length : 0); i++) {
                let found = direct[i < 0 ? node.name : groups[i]];
                if (found)
                    return found;
            }
        };
    }
}
/**
An empty dummy node type to use when no actual type is available.
*/
NodeType.none = new NodeType("", Object.create(null), 0, 8 /* NodeFlag.Anonymous */);
/**
A node set holds a collection of node types. It is used to
compactly represent trees by storing their type ids, rather than a
full pointer to the type object, in a numeric array. Each parser
[has](#lr.LRParser.nodeSet) a node set, and [tree
buffers](#common.TreeBuffer) can only store collections of nodes
from the same set. A set can have a maximum of 2**16 (65536) node
types in it, so that the ids fit into 16-bit typed array slots.
*/
class NodeSet {
    /**
    Create a set with the given types. The `id` property of each
    type should correspond to its position within the array.
    */
    constructor(
    /**
    The node types in this set, by id.
    */
    types) {
        this.types = types;
        for (let i = 0; i < types.length; i++)
            if (types[i].id != i)
                throw new RangeError("Node type ids should correspond to array positions when creating a node set");
    }
    /**
    Create a copy of this set with some node properties added. The
    arguments to this method can be created with
    [`NodeProp.add`](#common.NodeProp.add).
    */
    extend(...props) {
        let newTypes = [];
        for (let type of this.types) {
            let newProps = null;
            for (let source of props) {
                let add = source(type);
                if (add) {
                    if (!newProps)
                        newProps = Object.assign({}, type.props);
                    newProps[add[0].id] = add[1];
                }
            }
            newTypes.push(newProps ? new NodeType(type.name, newProps, type.id, type.flags) : type);
        }
        return new NodeSet(newTypes);
    }
}
const CachedNode = new WeakMap(), CachedInnerNode = new WeakMap();
/**
Options that control iteration. Can be combined with the `|`
operator to enable multiple ones.
*/
exports.IterMode = void 0;
(function (IterMode) {
    /**
    When enabled, iteration will only visit [`Tree`](#common.Tree)
    objects, not nodes packed into
    [`TreeBuffer`](#common.TreeBuffer)s.
    */
    IterMode[IterMode["ExcludeBuffers"] = 1] = "ExcludeBuffers";
    /**
    Enable this to make iteration include anonymous nodes (such as
    the nodes that wrap repeated grammar constructs into a balanced
    tree).
    */
    IterMode[IterMode["IncludeAnonymous"] = 2] = "IncludeAnonymous";
    /**
    By default, regular [mounted](#common.NodeProp^mounted) nodes
    replace their base node in iteration. Enable this to ignore them
    instead.
    */
    IterMode[IterMode["IgnoreMounts"] = 4] = "IgnoreMounts";
    /**
    This option only applies in
    [`enter`](#common.SyntaxNode.enter)-style methods. It tells the
    library to not enter mounted overlays if one covers the given
    position.
    */
    IterMode[IterMode["IgnoreOverlays"] = 8] = "IgnoreOverlays";
})(exports.IterMode || (exports.IterMode = {}));
/**
A piece of syntax tree. There are two ways to approach these
trees: the way they are actually stored in memory, and the
convenient way.

Syntax trees are stored as a tree of `Tree` and `TreeBuffer`
objects. By packing detail information into `TreeBuffer` leaf
nodes, the representation is made a lot more memory-efficient.

However, when you want to actually work with tree nodes, this
representation is very awkward, so most client code will want to
use the [`TreeCursor`](#common.TreeCursor) or
[`SyntaxNode`](#common.SyntaxNode) interface instead, which provides
a view on some part of this data structure, and can be used to
move around to adjacent nodes.
*/
class Tree {
    /**
    Construct a new tree. See also [`Tree.build`](#common.Tree^build).
    */
    constructor(
    /**
    The type of the top node.
    */
    type, 
    /**
    This node's child nodes.
    */
    children, 
    /**
    The positions (offsets relative to the start of this tree) of
    the children.
    */
    positions, 
    /**
    The total length of this tree
    */
    length, 
    /**
    Per-node [node props](#common.NodeProp) to associate with this node.
    */
    props) {
        this.type = type;
        this.children = children;
        this.positions = positions;
        this.length = length;
        /**
        @internal
        */
        this.props = null;
        if (props && props.length) {
            this.props = Object.create(null);
            for (let [prop, value] of props)
                this.props[typeof prop == "number" ? prop : prop.id] = value;
        }
    }
    /**
    @internal
    */
    toString() {
        let mounted = MountedTree.get(this);
        if (mounted && !mounted.overlay)
            return mounted.tree.toString();
        let children = "";
        for (let ch of this.children) {
            let str = ch.toString();
            if (str) {
                if (children)
                    children += ",";
                children += str;
            }
        }
        return !this.type.name ? children :
            (/\W/.test(this.type.name) && !this.type.isError ? JSON.stringify(this.type.name) : this.type.name) +
                (children.length ? "(" + children + ")" : "");
    }
    /**
    Get a [tree cursor](#common.TreeCursor) positioned at the top of
    the tree. Mode can be used to [control](#common.IterMode) which
    nodes the cursor visits.
    */
    cursor(mode = 0) {
        return new TreeCursor(this.topNode, mode);
    }
    /**
    Get a [tree cursor](#common.TreeCursor) pointing into this tree
    at the given position and side (see
    [`moveTo`](#common.TreeCursor.moveTo).
    */
    cursorAt(pos, side = 0, mode = 0) {
        let scope = CachedNode.get(this) || this.topNode;
        let cursor = new TreeCursor(scope);
        cursor.moveTo(pos, side);
        CachedNode.set(this, cursor._tree);
        return cursor;
    }
    /**
    Get a [syntax node](#common.SyntaxNode) object for the top of the
    tree.
    */
    get topNode() {
        return new TreeNode(this, 0, 0, null);
    }
    /**
    Get the [syntax node](#common.SyntaxNode) at the given position.
    If `side` is -1, this will move into nodes that end at the
    position. If 1, it'll move into nodes that start at the
    position. With 0, it'll only enter nodes that cover the position
    from both sides.
    
    Note that this will not enter
    [overlays](#common.MountedTree.overlay), and you often want
    [`resolveInner`](#common.Tree.resolveInner) instead.
    */
    resolve(pos, side = 0) {
        let node = resolveNode(CachedNode.get(this) || this.topNode, pos, side, false);
        CachedNode.set(this, node);
        return node;
    }
    /**
    Like [`resolve`](#common.Tree.resolve), but will enter
    [overlaid](#common.MountedTree.overlay) nodes, producing a syntax node
    pointing into the innermost overlaid tree at the given position
    (with parent links going through all parent structure, including
    the host trees).
    */
    resolveInner(pos, side = 0) {
        let node = resolveNode(CachedInnerNode.get(this) || this.topNode, pos, side, true);
        CachedInnerNode.set(this, node);
        return node;
    }
    /**
    In some situations, it can be useful to iterate through all
    nodes around a position, including those in overlays that don't
    directly cover the position. This method gives you an iterator
    that will produce all nodes, from small to big, around the given
    position.
    */
    resolveStack(pos, side = 0) {
        return stackIterator(this, pos, side);
    }
    /**
    Iterate over the tree and its children, calling `enter` for any
    node that touches the `from`/`to` region (if given) before
    running over such a node's children, and `leave` (if given) when
    leaving the node. When `enter` returns `false`, that node will
    not have its children iterated over (or `leave` called).
    */
    iterate(spec) {
        let { enter, leave, from = 0, to = this.length } = spec;
        let mode = spec.mode || 0, anon = (mode & exports.IterMode.IncludeAnonymous) > 0;
        for (let c = this.cursor(mode | exports.IterMode.IncludeAnonymous);;) {
            let entered = false;
            if (c.from <= to && c.to >= from && (!anon && c.type.isAnonymous || enter(c) !== false)) {
                if (c.firstChild())
                    continue;
                entered = true;
            }
            for (;;) {
                if (entered && leave && (anon || !c.type.isAnonymous))
                    leave(c);
                if (c.nextSibling())
                    break;
                if (!c.parent())
                    return;
                entered = true;
            }
        }
    }
    /**
    Get the value of the given [node prop](#common.NodeProp) for this
    node. Works with both per-node and per-type props.
    */
    prop(prop) {
        return !prop.perNode ? this.type.prop(prop) : this.props ? this.props[prop.id] : undefined;
    }
    /**
    Returns the node's [per-node props](#common.NodeProp.perNode) in a
    format that can be passed to the [`Tree`](#common.Tree)
    constructor.
    */
    get propValues() {
        let result = [];
        if (this.props)
            for (let id in this.props)
                result.push([+id, this.props[id]]);
        return result;
    }
    /**
    Balance the direct children of this tree, producing a copy of
    which may have children grouped into subtrees with type
    [`NodeType.none`](#common.NodeType^none).
    */
    balance(config = {}) {
        return this.children.length <= 8 /* Balance.BranchFactor */ ? this :
            balanceRange(NodeType.none, this.children, this.positions, 0, this.children.length, 0, this.length, (children, positions, length) => new Tree(this.type, children, positions, length, this.propValues), config.makeTree || ((children, positions, length) => new Tree(NodeType.none, children, positions, length)));
    }
    /**
    Build a tree from a postfix-ordered buffer of node information,
    or a cursor over such a buffer.
    */
    static build(data) { return buildTree(data); }
}
/**
The empty tree
*/
Tree.empty = new Tree(NodeType.none, [], [], 0);
class FlatBufferCursor {
    constructor(buffer, index) {
        this.buffer = buffer;
        this.index = index;
    }
    get id() { return this.buffer[this.index - 4]; }
    get start() { return this.buffer[this.index - 3]; }
    get end() { return this.buffer[this.index - 2]; }
    get size() { return this.buffer[this.index - 1]; }
    get pos() { return this.index; }
    next() { this.index -= 4; }
    fork() { return new FlatBufferCursor(this.buffer, this.index); }
}
/**
Tree buffers contain (type, start, end, endIndex) quads for each
node. In such a buffer, nodes are stored in prefix order (parents
before children, with the endIndex of the parent indicating which
children belong to it).
*/
class TreeBuffer {
    /**
    Create a tree buffer.
    */
    constructor(
    /**
    The buffer's content.
    */
    buffer, 
    /**
    The total length of the group of nodes in the buffer.
    */
    length, 
    /**
    The node set used in this buffer.
    */
    set) {
        this.buffer = buffer;
        this.length = length;
        this.set = set;
    }
    /**
    @internal
    */
    get type() { return NodeType.none; }
    /**
    @internal
    */
    toString() {
        let result = [];
        for (let index = 0; index < this.buffer.length;) {
            result.push(this.childString(index));
            index = this.buffer[index + 3];
        }
        return result.join(",");
    }
    /**
    @internal
    */
    childString(index) {
        let id = this.buffer[index], endIndex = this.buffer[index + 3];
        let type = this.set.types[id], result = type.name;
        if (/\W/.test(result) && !type.isError)
            result = JSON.stringify(result);
        index += 4;
        if (endIndex == index)
            return result;
        let children = [];
        while (index < endIndex) {
            children.push(this.childString(index));
            index = this.buffer[index + 3];
        }
        return result + "(" + children.join(",") + ")";
    }
    /**
    @internal
    */
    findChild(startIndex, endIndex, dir, pos, side) {
        let { buffer } = this, pick = -1;
        for (let i = startIndex; i != endIndex; i = buffer[i + 3]) {
            if (checkSide(side, pos, buffer[i + 1], buffer[i + 2])) {
                pick = i;
                if (dir > 0)
                    break;
            }
        }
        return pick;
    }
    /**
    @internal
    */
    slice(startI, endI, from) {
        let b = this.buffer;
        let copy = new Uint16Array(endI - startI), len = 0;
        for (let i = startI, j = 0; i < endI;) {
            copy[j++] = b[i++];
            copy[j++] = b[i++] - from;
            let to = copy[j++] = b[i++] - from;
            copy[j++] = b[i++] - startI;
            len = Math.max(len, to);
        }
        return new TreeBuffer(copy, len, this.set);
    }
}
function checkSide(side, pos, from, to) {
    switch (side) {
        case -2 /* Side.Before */: return from < pos;
        case -1 /* Side.AtOrBefore */: return to >= pos && from < pos;
        case 0 /* Side.Around */: return from < pos && to > pos;
        case 1 /* Side.AtOrAfter */: return from <= pos && to > pos;
        case 2 /* Side.After */: return to > pos;
        case 4 /* Side.DontCare */: return true;
    }
}
function resolveNode(node, pos, side, overlays) {
    var _a;
    // Move up to a node that actually holds the position, if possible
    while (node.from == node.to ||
        (side < 1 ? node.from >= pos : node.from > pos) ||
        (side > -1 ? node.to <= pos : node.to < pos)) {
        let parent = !overlays && node instanceof TreeNode && node.index < 0 ? null : node.parent;
        if (!parent)
            return node;
        node = parent;
    }
    let mode = overlays ? 0 : exports.IterMode.IgnoreOverlays;
    // Must go up out of overlays when those do not overlap with pos
    if (overlays)
        for (let scan = node, parent = scan.parent; parent; scan = parent, parent = scan.parent) {
            if (scan instanceof TreeNode && scan.index < 0 && ((_a = parent.enter(pos, side, mode)) === null || _a === void 0 ? void 0 : _a.from) != scan.from)
                node = parent;
        }
    for (;;) {
        let inner = node.enter(pos, side, mode);
        if (!inner)
            return node;
        node = inner;
    }
}
class BaseNode {
    cursor(mode = 0) { return new TreeCursor(this, mode); }
    getChild(type, before = null, after = null) {
        let r = getChildren(this, type, before, after);
        return r.length ? r[0] : null;
    }
    getChildren(type, before = null, after = null) {
        return getChildren(this, type, before, after);
    }
    resolve(pos, side = 0) {
        return resolveNode(this, pos, side, false);
    }
    resolveInner(pos, side = 0) {
        return resolveNode(this, pos, side, true);
    }
    matchContext(context) {
        return matchNodeContext(this, context);
    }
    enterUnfinishedNodesBefore(pos) {
        let scan = this.childBefore(pos), node = this;
        while (scan) {
            let last = scan.lastChild;
            if (!last || last.to != scan.to)
                break;
            if (last.type.isError && last.from == last.to) {
                node = scan;
                scan = last.prevSibling;
            }
            else {
                scan = last;
            }
        }
        return node;
    }
    get node() { return this; }
    get next() { return this.parent; }
}
class TreeNode extends BaseNode {
    constructor(_tree, from, 
    // Index in parent node, set to -1 if the node is not a direct child of _parent.node (overlay)
    index, _parent) {
        super();
        this._tree = _tree;
        this.from = from;
        this.index = index;
        this._parent = _parent;
    }
    get type() { return this._tree.type; }
    get name() { return this._tree.type.name; }
    get to() { return this.from + this._tree.length; }
    nextChild(i, dir, pos, side, mode = 0) {
        for (let parent = this;;) {
            for (let { children, positions } = parent._tree, e = dir > 0 ? children.length : -1; i != e; i += dir) {
                let next = children[i], start = positions[i] + parent.from;
                if (!checkSide(side, pos, start, start + next.length))
                    continue;
                if (next instanceof TreeBuffer) {
                    if (mode & exports.IterMode.ExcludeBuffers)
                        continue;
                    let index = next.findChild(0, next.buffer.length, dir, pos - start, side);
                    if (index > -1)
                        return new BufferNode(new BufferContext(parent, next, i, start), null, index);
                }
                else if ((mode & exports.IterMode.IncludeAnonymous) || (!next.type.isAnonymous || hasChild(next))) {
                    let mounted;
                    if (!(mode & exports.IterMode.IgnoreMounts) && (mounted = MountedTree.get(next)) && !mounted.overlay)
                        return new TreeNode(mounted.tree, start, i, parent);
                    let inner = new TreeNode(next, start, i, parent);
                    return (mode & exports.IterMode.IncludeAnonymous) || !inner.type.isAnonymous ? inner
                        : inner.nextChild(dir < 0 ? next.children.length - 1 : 0, dir, pos, side);
                }
            }
            if ((mode & exports.IterMode.IncludeAnonymous) || !parent.type.isAnonymous)
                return null;
            if (parent.index >= 0)
                i = parent.index + dir;
            else
                i = dir < 0 ? -1 : parent._parent._tree.children.length;
            parent = parent._parent;
            if (!parent)
                return null;
        }
    }
    get firstChild() { return this.nextChild(0, 1, 0, 4 /* Side.DontCare */); }
    get lastChild() { return this.nextChild(this._tree.children.length - 1, -1, 0, 4 /* Side.DontCare */); }
    childAfter(pos) { return this.nextChild(0, 1, pos, 2 /* Side.After */); }
    childBefore(pos) { return this.nextChild(this._tree.children.length - 1, -1, pos, -2 /* Side.Before */); }
    enter(pos, side, mode = 0) {
        let mounted;
        if (!(mode & exports.IterMode.IgnoreOverlays) && (mounted = MountedTree.get(this._tree)) && mounted.overlay) {
            let rPos = pos - this.from;
            for (let { from, to } of mounted.overlay) {
                if ((side > 0 ? from <= rPos : from < rPos) &&
                    (side < 0 ? to >= rPos : to > rPos))
                    return new TreeNode(mounted.tree, mounted.overlay[0].from + this.from, -1, this);
            }
        }
        return this.nextChild(0, 1, pos, side, mode);
    }
    nextSignificantParent() {
        let val = this;
        while (val.type.isAnonymous && val._parent)
            val = val._parent;
        return val;
    }
    get parent() {
        return this._parent ? this._parent.nextSignificantParent() : null;
    }
    get nextSibling() {
        return this._parent && this.index >= 0 ? this._parent.nextChild(this.index + 1, 1, 0, 4 /* Side.DontCare */) : null;
    }
    get prevSibling() {
        return this._parent && this.index >= 0 ? this._parent.nextChild(this.index - 1, -1, 0, 4 /* Side.DontCare */) : null;
    }
    get tree() { return this._tree; }
    toTree() { return this._tree; }
    /**
    @internal
    */
    toString() { return this._tree.toString(); }
}
function getChildren(node, type, before, after) {
    let cur = node.cursor(), result = [];
    if (!cur.firstChild())
        return result;
    if (before != null)
        for (let found = false; !found;) {
            found = cur.type.is(before);
            if (!cur.nextSibling())
                return result;
        }
    for (;;) {
        if (after != null && cur.type.is(after))
            return result;
        if (cur.type.is(type))
            result.push(cur.node);
        if (!cur.nextSibling())
            return after == null ? result : [];
    }
}
function matchNodeContext(node, context, i = context.length - 1) {
    for (let p = node.parent; i >= 0; p = p.parent) {
        if (!p)
            return false;
        if (!p.type.isAnonymous) {
            if (context[i] && context[i] != p.name)
                return false;
            i--;
        }
    }
    return true;
}
class BufferContext {
    constructor(parent, buffer, index, start) {
        this.parent = parent;
        this.buffer = buffer;
        this.index = index;
        this.start = start;
    }
}
class BufferNode extends BaseNode {
    get name() { return this.type.name; }
    get from() { return this.context.start + this.context.buffer.buffer[this.index + 1]; }
    get to() { return this.context.start + this.context.buffer.buffer[this.index + 2]; }
    constructor(context, _parent, index) {
        super();
        this.context = context;
        this._parent = _parent;
        this.index = index;
        this.type = context.buffer.set.types[context.buffer.buffer[index]];
    }
    child(dir, pos, side) {
        let { buffer } = this.context;
        let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.context.start, side);
        return index < 0 ? null : new BufferNode(this.context, this, index);
    }
    get firstChild() { return this.child(1, 0, 4 /* Side.DontCare */); }
    get lastChild() { return this.child(-1, 0, 4 /* Side.DontCare */); }
    childAfter(pos) { return this.child(1, pos, 2 /* Side.After */); }
    childBefore(pos) { return this.child(-1, pos, -2 /* Side.Before */); }
    enter(pos, side, mode = 0) {
        if (mode & exports.IterMode.ExcludeBuffers)
            return null;
        let { buffer } = this.context;
        let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], side > 0 ? 1 : -1, pos - this.context.start, side);
        return index < 0 ? null : new BufferNode(this.context, this, index);
    }
    get parent() {
        return this._parent || this.context.parent.nextSignificantParent();
    }
    externalSibling(dir) {
        return this._parent ? null : this.context.parent.nextChild(this.context.index + dir, dir, 0, 4 /* Side.DontCare */);
    }
    get nextSibling() {
        let { buffer } = this.context;
        let after = buffer.buffer[this.index + 3];
        if (after < (this._parent ? buffer.buffer[this._parent.index + 3] : buffer.buffer.length))
            return new BufferNode(this.context, this._parent, after);
        return this.externalSibling(1);
    }
    get prevSibling() {
        let { buffer } = this.context;
        let parentStart = this._parent ? this._parent.index + 4 : 0;
        if (this.index == parentStart)
            return this.externalSibling(-1);
        return new BufferNode(this.context, this._parent, buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
    }
    get tree() { return null; }
    toTree() {
        let children = [], positions = [];
        let { buffer } = this.context;
        let startI = this.index + 4, endI = buffer.buffer[this.index + 3];
        if (endI > startI) {
            let from = buffer.buffer[this.index + 1];
            children.push(buffer.slice(startI, endI, from));
            positions.push(0);
        }
        return new Tree(this.type, children, positions, this.to - this.from);
    }
    /**
    @internal
    */
    toString() { return this.context.buffer.childString(this.index); }
}
function iterStack(heads) {
    if (!heads.length)
        return null;
    let pick = 0, picked = heads[0];
    for (let i = 1; i < heads.length; i++) {
        let node = heads[i];
        if (node.from > picked.from || node.to < picked.to) {
            picked = node;
            pick = i;
        }
    }
    let next = picked instanceof TreeNode && picked.index < 0 ? null : picked.parent;
    let newHeads = heads.slice();
    if (next)
        newHeads[pick] = next;
    else
        newHeads.splice(pick, 1);
    return new StackIterator(newHeads, picked);
}
class StackIterator {
    constructor(heads, node) {
        this.heads = heads;
        this.node = node;
    }
    get next() { return iterStack(this.heads); }
}
function stackIterator(tree, pos, side) {
    let inner = tree.resolveInner(pos, side), layers = null;
    for (let scan = inner instanceof TreeNode ? inner : inner.context.parent; scan; scan = scan.parent) {
        if (scan.index < 0) { // This is an overlay root
            let parent = scan.parent;
            (layers || (layers = [inner])).push(parent.resolve(pos, side));
            scan = parent;
        }
        else {
            let mount = MountedTree.get(scan.tree);
            // Relevant overlay branching off
            if (mount && mount.overlay && mount.overlay[0].from <= pos && mount.overlay[mount.overlay.length - 1].to >= pos) {
                let root = new TreeNode(mount.tree, mount.overlay[0].from + scan.from, -1, scan);
                (layers || (layers = [inner])).push(resolveNode(root, pos, side, false));
            }
        }
    }
    return layers ? iterStack(layers) : inner;
}
/**
A tree cursor object focuses on a given node in a syntax tree, and
allows you to move to adjacent nodes.
*/
class TreeCursor {
    /**
    Shorthand for `.type.name`.
    */
    get name() { return this.type.name; }
    /**
    @internal
    */
    constructor(node, 
    /**
    @internal
    */
    mode = 0) {
        this.mode = mode;
        /**
        @internal
        */
        this.buffer = null;
        this.stack = [];
        /**
        @internal
        */
        this.index = 0;
        this.bufferNode = null;
        if (node instanceof TreeNode) {
            this.yieldNode(node);
        }
        else {
            this._tree = node.context.parent;
            this.buffer = node.context;
            for (let n = node._parent; n; n = n._parent)
                this.stack.unshift(n.index);
            this.bufferNode = node;
            this.yieldBuf(node.index);
        }
    }
    yieldNode(node) {
        if (!node)
            return false;
        this._tree = node;
        this.type = node.type;
        this.from = node.from;
        this.to = node.to;
        return true;
    }
    yieldBuf(index, type) {
        this.index = index;
        let { start, buffer } = this.buffer;
        this.type = type || buffer.set.types[buffer.buffer[index]];
        this.from = start + buffer.buffer[index + 1];
        this.to = start + buffer.buffer[index + 2];
        return true;
    }
    /**
    @internal
    */
    yield(node) {
        if (!node)
            return false;
        if (node instanceof TreeNode) {
            this.buffer = null;
            return this.yieldNode(node);
        }
        this.buffer = node.context;
        return this.yieldBuf(node.index, node.type);
    }
    /**
    @internal
    */
    toString() {
        return this.buffer ? this.buffer.buffer.childString(this.index) : this._tree.toString();
    }
    /**
    @internal
    */
    enterChild(dir, pos, side) {
        if (!this.buffer)
            return this.yield(this._tree.nextChild(dir < 0 ? this._tree._tree.children.length - 1 : 0, dir, pos, side, this.mode));
        let { buffer } = this.buffer;
        let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.buffer.start, side);
        if (index < 0)
            return false;
        this.stack.push(this.index);
        return this.yieldBuf(index);
    }
    /**
    Move the cursor to this node's first child. When this returns
    false, the node has no child, and the cursor has not been moved.
    */
    firstChild() { return this.enterChild(1, 0, 4 /* Side.DontCare */); }
    /**
    Move the cursor to this node's last child.
    */
    lastChild() { return this.enterChild(-1, 0, 4 /* Side.DontCare */); }
    /**
    Move the cursor to the first child that ends after `pos`.
    */
    childAfter(pos) { return this.enterChild(1, pos, 2 /* Side.After */); }
    /**
    Move to the last child that starts before `pos`.
    */
    childBefore(pos) { return this.enterChild(-1, pos, -2 /* Side.Before */); }
    /**
    Move the cursor to the child around `pos`. If side is -1 the
    child may end at that position, when 1 it may start there. This
    will also enter [overlaid](#common.MountedTree.overlay)
    [mounted](#common.NodeProp^mounted) trees unless `overlays` is
    set to false.
    */
    enter(pos, side, mode = this.mode) {
        if (!this.buffer)
            return this.yield(this._tree.enter(pos, side, mode));
        return mode & exports.IterMode.ExcludeBuffers ? false : this.enterChild(1, pos, side);
    }
    /**
    Move to the node's parent node, if this isn't the top node.
    */
    parent() {
        if (!this.buffer)
            return this.yieldNode((this.mode & exports.IterMode.IncludeAnonymous) ? this._tree._parent : this._tree.parent);
        if (this.stack.length)
            return this.yieldBuf(this.stack.pop());
        let parent = (this.mode & exports.IterMode.IncludeAnonymous) ? this.buffer.parent : this.buffer.parent.nextSignificantParent();
        this.buffer = null;
        return this.yieldNode(parent);
    }
    /**
    @internal
    */
    sibling(dir) {
        if (!this.buffer)
            return !this._tree._parent ? false
                : this.yield(this._tree.index < 0 ? null
                    : this._tree._parent.nextChild(this._tree.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode));
        let { buffer } = this.buffer, d = this.stack.length - 1;
        if (dir < 0) {
            let parentStart = d < 0 ? 0 : this.stack[d] + 4;
            if (this.index != parentStart)
                return this.yieldBuf(buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
        }
        else {
            let after = buffer.buffer[this.index + 3];
            if (after < (d < 0 ? buffer.buffer.length : buffer.buffer[this.stack[d] + 3]))
                return this.yieldBuf(after);
        }
        return d < 0 ? this.yield(this.buffer.parent.nextChild(this.buffer.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode)) : false;
    }
    /**
    Move to this node's next sibling, if any.
    */
    nextSibling() { return this.sibling(1); }
    /**
    Move to this node's previous sibling, if any.
    */
    prevSibling() { return this.sibling(-1); }
    atLastNode(dir) {
        let index, parent, { buffer } = this;
        if (buffer) {
            if (dir > 0) {
                if (this.index < buffer.buffer.buffer.length)
                    return false;
            }
            else {
                for (let i = 0; i < this.index; i++)
                    if (buffer.buffer.buffer[i + 3] < this.index)
                        return false;
            }
            ({ index, parent } = buffer);
        }
        else {
            ({ index, _parent: parent } = this._tree);
        }
        for (; parent; { index, _parent: parent } = parent) {
            if (index > -1)
                for (let i = index + dir, e = dir < 0 ? -1 : parent._tree.children.length; i != e; i += dir) {
                    let child = parent._tree.children[i];
                    if ((this.mode & exports.IterMode.IncludeAnonymous) ||
                        child instanceof TreeBuffer ||
                        !child.type.isAnonymous ||
                        hasChild(child))
                        return false;
                }
        }
        return true;
    }
    move(dir, enter) {
        if (enter && this.enterChild(dir, 0, 4 /* Side.DontCare */))
            return true;
        for (;;) {
            if (this.sibling(dir))
                return true;
            if (this.atLastNode(dir) || !this.parent())
                return false;
        }
    }
    /**
    Move to the next node in a
    [pre-order](https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR)
    traversal, going from a node to its first child or, if the
    current node is empty or `enter` is false, its next sibling or
    the next sibling of the first parent node that has one.
    */
    next(enter = true) { return this.move(1, enter); }
    /**
    Move to the next node in a last-to-first pre-order traveral. A
    node is followed by its last child or, if it has none, its
    previous sibling or the previous sibling of the first parent
    node that has one.
    */
    prev(enter = true) { return this.move(-1, enter); }
    /**
    Move the cursor to the innermost node that covers `pos`. If
    `side` is -1, it will enter nodes that end at `pos`. If it is 1,
    it will enter nodes that start at `pos`.
    */
    moveTo(pos, side = 0) {
        // Move up to a node that actually holds the position, if possible
        while (this.from == this.to ||
            (side < 1 ? this.from >= pos : this.from > pos) ||
            (side > -1 ? this.to <= pos : this.to < pos))
            if (!this.parent())
                break;
        // Then scan down into child nodes as far as possible
        while (this.enterChild(1, pos, side)) { }
        return this;
    }
    /**
    Get a [syntax node](#common.SyntaxNode) at the cursor's current
    position.
    */
    get node() {
        if (!this.buffer)
            return this._tree;
        let cache = this.bufferNode, result = null, depth = 0;
        if (cache && cache.context == this.buffer) {
            scan: for (let index = this.index, d = this.stack.length; d >= 0;) {
                for (let c = cache; c; c = c._parent)
                    if (c.index == index) {
                        if (index == this.index)
                            return c;
                        result = c;
                        depth = d + 1;
                        break scan;
                    }
                index = this.stack[--d];
            }
        }
        for (let i = depth; i < this.stack.length; i++)
            result = new BufferNode(this.buffer, result, this.stack[i]);
        return this.bufferNode = new BufferNode(this.buffer, result, this.index);
    }
    /**
    Get the [tree](#common.Tree) that represents the current node, if
    any. Will return null when the node is in a [tree
    buffer](#common.TreeBuffer).
    */
    get tree() {
        return this.buffer ? null : this._tree._tree;
    }
    /**
    Iterate over the current node and all its descendants, calling
    `enter` when entering a node and `leave`, if given, when leaving
    one. When `enter` returns `false`, any children of that node are
    skipped, and `leave` isn't called for it.
    */
    iterate(enter, leave) {
        for (let depth = 0;;) {
            let mustLeave = false;
            if (this.type.isAnonymous || enter(this) !== false) {
                if (this.firstChild()) {
                    depth++;
                    continue;
                }
                if (!this.type.isAnonymous)
                    mustLeave = true;
            }
            for (;;) {
                if (mustLeave && leave)
                    leave(this);
                mustLeave = this.type.isAnonymous;
                if (this.nextSibling())
                    break;
                if (!depth)
                    return;
                this.parent();
                depth--;
                mustLeave = true;
            }
        }
    }
    /**
    Test whether the current node matches a given context—a sequence
    of direct parent node names. Empty strings in the context array
    are treated as wildcards.
    */
    matchContext(context) {
        if (!this.buffer)
            return matchNodeContext(this.node, context);
        let { buffer } = this.buffer, { types } = buffer.set;
        for (let i = context.length - 1, d = this.stack.length - 1; i >= 0; d--) {
            if (d < 0)
                return matchNodeContext(this.node, context, i);
            let type = types[buffer.buffer[this.stack[d]]];
            if (!type.isAnonymous) {
                if (context[i] && context[i] != type.name)
                    return false;
                i--;
            }
        }
        return true;
    }
}
function hasChild(tree) {
    return tree.children.some(ch => ch instanceof TreeBuffer || !ch.type.isAnonymous || hasChild(ch));
}
function buildTree(data) {
    var _a;
    let { buffer, nodeSet, maxBufferLength = DefaultBufferLength, reused = [], minRepeatType = nodeSet.types.length } = data;
    let cursor = Array.isArray(buffer) ? new FlatBufferCursor(buffer, buffer.length) : buffer;
    let types = nodeSet.types;
    let contextHash = 0, lookAhead = 0;
    function takeNode(parentStart, minPos, children, positions, inRepeat, depth) {
        let { id, start, end, size } = cursor;
        let lookAheadAtStart = lookAhead;
        while (size < 0) {
            cursor.next();
            if (size == -1 /* SpecialRecord.Reuse */) {
                let node = reused[id];
                children.push(node);
                positions.push(start - parentStart);
                return;
            }
            else if (size == -3 /* SpecialRecord.ContextChange */) { // Context change
                contextHash = id;
                return;
            }
            else if (size == -4 /* SpecialRecord.LookAhead */) {
                lookAhead = id;
                return;
            }
            else {
                throw new RangeError(`Unrecognized record size: ${size}`);
            }
        }
        let type = types[id], node, buffer;
        let startPos = start - parentStart;
        if (end - start <= maxBufferLength && (buffer = findBufferSize(cursor.pos - minPos, inRepeat))) {
            // Small enough for a buffer, and no reused nodes inside
            let data = new Uint16Array(buffer.size - buffer.skip);
            let endPos = cursor.pos - buffer.size, index = data.length;
            while (cursor.pos > endPos)
                index = copyToBuffer(buffer.start, data, index);
            node = new TreeBuffer(data, end - buffer.start, nodeSet);
            startPos = buffer.start - parentStart;
        }
        else { // Make it a node
            let endPos = cursor.pos - size;
            cursor.next();
            let localChildren = [], localPositions = [];
            let localInRepeat = id >= minRepeatType ? id : -1;
            let lastGroup = 0, lastEnd = end;
            while (cursor.pos > endPos) {
                if (localInRepeat >= 0 && cursor.id == localInRepeat && cursor.size >= 0) {
                    if (cursor.end <= lastEnd - maxBufferLength) {
                        makeRepeatLeaf(localChildren, localPositions, start, lastGroup, cursor.end, lastEnd, localInRepeat, lookAheadAtStart);
                        lastGroup = localChildren.length;
                        lastEnd = cursor.end;
                    }
                    cursor.next();
                }
                else if (depth > 2500 /* CutOff.Depth */) {
                    takeFlatNode(start, endPos, localChildren, localPositions);
                }
                else {
                    takeNode(start, endPos, localChildren, localPositions, localInRepeat, depth + 1);
                }
            }
            if (localInRepeat >= 0 && lastGroup > 0 && lastGroup < localChildren.length)
                makeRepeatLeaf(localChildren, localPositions, start, lastGroup, start, lastEnd, localInRepeat, lookAheadAtStart);
            localChildren.reverse();
            localPositions.reverse();
            if (localInRepeat > -1 && lastGroup > 0) {
                let make = makeBalanced(type);
                node = balanceRange(type, localChildren, localPositions, 0, localChildren.length, 0, end - start, make, make);
            }
            else {
                node = makeTree(type, localChildren, localPositions, end - start, lookAheadAtStart - end);
            }
        }
        children.push(node);
        positions.push(startPos);
    }
    function takeFlatNode(parentStart, minPos, children, positions) {
        let nodes = []; // Temporary, inverted array of leaf nodes found, with absolute positions
        let nodeCount = 0, stopAt = -1;
        while (cursor.pos > minPos) {
            let { id, start, end, size } = cursor;
            if (size > 4) { // Not a leaf
                cursor.next();
            }
            else if (stopAt > -1 && start < stopAt) {
                break;
            }
            else {
                if (stopAt < 0)
                    stopAt = end - maxBufferLength;
                nodes.push(id, start, end);
                nodeCount++;
                cursor.next();
            }
        }
        if (nodeCount) {
            let buffer = new Uint16Array(nodeCount * 4);
            let start = nodes[nodes.length - 2];
            for (let i = nodes.length - 3, j = 0; i >= 0; i -= 3) {
                buffer[j++] = nodes[i];
                buffer[j++] = nodes[i + 1] - start;
                buffer[j++] = nodes[i + 2] - start;
                buffer[j++] = j;
            }
            children.push(new TreeBuffer(buffer, nodes[2] - start, nodeSet));
            positions.push(start - parentStart);
        }
    }
    function makeBalanced(type) {
        return (children, positions, length) => {
            let lookAhead = 0, lastI = children.length - 1, last, lookAheadProp;
            if (lastI >= 0 && (last = children[lastI]) instanceof Tree) {
                if (!lastI && last.type == type && last.length == length)
                    return last;
                if (lookAheadProp = last.prop(NodeProp.lookAhead))
                    lookAhead = positions[lastI] + last.length + lookAheadProp;
            }
            return makeTree(type, children, positions, length, lookAhead);
        };
    }
    function makeRepeatLeaf(children, positions, base, i, from, to, type, lookAhead) {
        let localChildren = [], localPositions = [];
        while (children.length > i) {
            localChildren.push(children.pop());
            localPositions.push(positions.pop() + base - from);
        }
        children.push(makeTree(nodeSet.types[type], localChildren, localPositions, to - from, lookAhead - to));
        positions.push(from - base);
    }
    function makeTree(type, children, positions, length, lookAhead = 0, props) {
        if (contextHash) {
            let pair = [NodeProp.contextHash, contextHash];
            props = props ? [pair].concat(props) : [pair];
        }
        if (lookAhead > 25) {
            let pair = [NodeProp.lookAhead, lookAhead];
            props = props ? [pair].concat(props) : [pair];
        }
        return new Tree(type, children, positions, length, props);
    }
    function findBufferSize(maxSize, inRepeat) {
        // Scan through the buffer to find previous siblings that fit
        // together in a TreeBuffer, and don't contain any reused nodes
        // (which can't be stored in a buffer).
        // If `inRepeat` is > -1, ignore node boundaries of that type for
        // nesting, but make sure the end falls either at the start
        // (`maxSize`) or before such a node.
        let fork = cursor.fork();
        let size = 0, start = 0, skip = 0, minStart = fork.end - maxBufferLength;
        let result = { size: 0, start: 0, skip: 0 };
        scan: for (let minPos = fork.pos - maxSize; fork.pos > minPos;) {
            let nodeSize = fork.size;
            // Pretend nested repeat nodes of the same type don't exist
            if (fork.id == inRepeat && nodeSize >= 0) {
                // Except that we store the current state as a valid return
                // value.
                result.size = size;
                result.start = start;
                result.skip = skip;
                skip += 4;
                size += 4;
                fork.next();
                continue;
            }
            let startPos = fork.pos - nodeSize;
            if (nodeSize < 0 || startPos < minPos || fork.start < minStart)
                break;
            let localSkipped = fork.id >= minRepeatType ? 4 : 0;
            let nodeStart = fork.start;
            fork.next();
            while (fork.pos > startPos) {
                if (fork.size < 0) {
                    if (fork.size == -3 /* SpecialRecord.ContextChange */)
                        localSkipped += 4;
                    else
                        break scan;
                }
                else if (fork.id >= minRepeatType) {
                    localSkipped += 4;
                }
                fork.next();
            }
            start = nodeStart;
            size += nodeSize;
            skip += localSkipped;
        }
        if (inRepeat < 0 || size == maxSize) {
            result.size = size;
            result.start = start;
            result.skip = skip;
        }
        return result.size > 4 ? result : undefined;
    }
    function copyToBuffer(bufferStart, buffer, index) {
        let { id, start, end, size } = cursor;
        cursor.next();
        if (size >= 0 && id < minRepeatType) {
            let startIndex = index;
            if (size > 4) {
                let endPos = cursor.pos - (size - 4);
                while (cursor.pos > endPos)
                    index = copyToBuffer(bufferStart, buffer, index);
            }
            buffer[--index] = startIndex;
            buffer[--index] = end - bufferStart;
            buffer[--index] = start - bufferStart;
            buffer[--index] = id;
        }
        else if (size == -3 /* SpecialRecord.ContextChange */) {
            contextHash = id;
        }
        else if (size == -4 /* SpecialRecord.LookAhead */) {
            lookAhead = id;
        }
        return index;
    }
    let children = [], positions = [];
    while (cursor.pos > 0)
        takeNode(data.start || 0, data.bufferStart || 0, children, positions, -1, 0);
    let length = (_a = data.length) !== null && _a !== void 0 ? _a : (children.length ? positions[0] + children[0].length : 0);
    return new Tree(types[data.topID], children.reverse(), positions.reverse(), length);
}
const nodeSizeCache = new WeakMap;
function nodeSize(balanceType, node) {
    if (!balanceType.isAnonymous || node instanceof TreeBuffer || node.type != balanceType)
        return 1;
    let size = nodeSizeCache.get(node);
    if (size == null) {
        size = 1;
        for (let child of node.children) {
            if (child.type != balanceType || !(child instanceof Tree)) {
                size = 1;
                break;
            }
            size += nodeSize(balanceType, child);
        }
        nodeSizeCache.set(node, size);
    }
    return size;
}
function balanceRange(
// The type the balanced tree's inner nodes.
balanceType, 
// The direct children and their positions
children, positions, 
// The index range in children/positions to use
from, to, 
// The start position of the nodes, relative to their parent.
start, 
// Length of the outer node
length, 
// Function to build the top node of the balanced tree
mkTop, 
// Function to build internal nodes for the balanced tree
mkTree) {
    let total = 0;
    for (let i = from; i < to; i++)
        total += nodeSize(balanceType, children[i]);
    let maxChild = Math.ceil((total * 1.5) / 8 /* Balance.BranchFactor */);
    let localChildren = [], localPositions = [];
    function divide(children, positions, from, to, offset) {
        for (let i = from; i < to;) {
            let groupFrom = i, groupStart = positions[i], groupSize = nodeSize(balanceType, children[i]);
            i++;
            for (; i < to; i++) {
                let nextSize = nodeSize(balanceType, children[i]);
                if (groupSize + nextSize >= maxChild)
                    break;
                groupSize += nextSize;
            }
            if (i == groupFrom + 1) {
                if (groupSize > maxChild) {
                    let only = children[groupFrom]; // Only trees can have a size > 1
                    divide(only.children, only.positions, 0, only.children.length, positions[groupFrom] + offset);
                    continue;
                }
                localChildren.push(children[groupFrom]);
            }
            else {
                let length = positions[i - 1] + children[i - 1].length - groupStart;
                localChildren.push(balanceRange(balanceType, children, positions, groupFrom, i, groupStart, length, null, mkTree));
            }
            localPositions.push(groupStart + offset - start);
        }
    }
    divide(children, positions, from, to, 0);
    return (mkTop || mkTree)(localChildren, localPositions, length);
}
/**
Provides a way to associate values with pieces of trees. As long
as that part of the tree is reused, the associated values can be
retrieved from an updated tree.
*/
class NodeWeakMap {
    constructor() {
        this.map = new WeakMap();
    }
    setBuffer(buffer, index, value) {
        let inner = this.map.get(buffer);
        if (!inner)
            this.map.set(buffer, inner = new Map);
        inner.set(index, value);
    }
    getBuffer(buffer, index) {
        let inner = this.map.get(buffer);
        return inner && inner.get(index);
    }
    /**
    Set the value for this syntax node.
    */
    set(node, value) {
        if (node instanceof BufferNode)
            this.setBuffer(node.context.buffer, node.index, value);
        else if (node instanceof TreeNode)
            this.map.set(node.tree, value);
    }
    /**
    Retrieve value for this syntax node, if it exists in the map.
    */
    get(node) {
        return node instanceof BufferNode ? this.getBuffer(node.context.buffer, node.index)
            : node instanceof TreeNode ? this.map.get(node.tree) : undefined;
    }
    /**
    Set the value for the node that a cursor currently points to.
    */
    cursorSet(cursor, value) {
        if (cursor.buffer)
            this.setBuffer(cursor.buffer.buffer, cursor.index, value);
        else
            this.map.set(cursor.tree, value);
    }
    /**
    Retrieve the value for the node that a cursor currently points
    to.
    */
    cursorGet(cursor) {
        return cursor.buffer ? this.getBuffer(cursor.buffer.buffer, cursor.index) : this.map.get(cursor.tree);
    }
}

/**
Tree fragments are used during [incremental
parsing](#common.Parser.startParse) to track parts of old trees
that can be reused in a new parse. An array of fragments is used
to track regions of an old tree whose nodes might be reused in new
parses. Use the static
[`applyChanges`](#common.TreeFragment^applyChanges) method to
update fragments for document changes.
*/
class TreeFragment {
    /**
    Construct a tree fragment. You'll usually want to use
    [`addTree`](#common.TreeFragment^addTree) and
    [`applyChanges`](#common.TreeFragment^applyChanges) instead of
    calling this directly.
    */
    constructor(
    /**
    The start of the unchanged range pointed to by this fragment.
    This refers to an offset in the _updated_ document (as opposed
    to the original tree).
    */
    from, 
    /**
    The end of the unchanged range.
    */
    to, 
    /**
    The tree that this fragment is based on.
    */
    tree, 
    /**
    The offset between the fragment's tree and the document that
    this fragment can be used against. Add this when going from
    document to tree positions, subtract it to go from tree to
    document positions.
    */
    offset, openStart = false, openEnd = false) {
        this.from = from;
        this.to = to;
        this.tree = tree;
        this.offset = offset;
        this.open = (openStart ? 1 /* Open.Start */ : 0) | (openEnd ? 2 /* Open.End */ : 0);
    }
    /**
    Whether the start of the fragment represents the start of a
    parse, or the end of a change. (In the second case, it may not
    be safe to reuse some nodes at the start, depending on the
    parsing algorithm.)
    */
    get openStart() { return (this.open & 1 /* Open.Start */) > 0; }
    /**
    Whether the end of the fragment represents the end of a
    full-document parse, or the start of a change.
    */
    get openEnd() { return (this.open & 2 /* Open.End */) > 0; }
    /**
    Create a set of fragments from a freshly parsed tree, or update
    an existing set of fragments by replacing the ones that overlap
    with a tree with content from the new tree. When `partial` is
    true, the parse is treated as incomplete, and the resulting
    fragment has [`openEnd`](#common.TreeFragment.openEnd) set to
    true.
    */
    static addTree(tree, fragments = [], partial = false) {
        let result = [new TreeFragment(0, tree.length, tree, 0, false, partial)];
        for (let f of fragments)
            if (f.to > tree.length)
                result.push(f);
        return result;
    }
    /**
    Apply a set of edits to an array of fragments, removing or
    splitting fragments as necessary to remove edited ranges, and
    adjusting offsets for fragments that moved.
    */
    static applyChanges(fragments, changes, minGap = 128) {
        if (!changes.length)
            return fragments;
        let result = [];
        let fI = 1, nextF = fragments.length ? fragments[0] : null;
        for (let cI = 0, pos = 0, off = 0;; cI++) {
            let nextC = cI < changes.length ? changes[cI] : null;
            let nextPos = nextC ? nextC.fromA : 1e9;
            if (nextPos - pos >= minGap)
                while (nextF && nextF.from < nextPos) {
                    let cut = nextF;
                    if (pos >= cut.from || nextPos <= cut.to || off) {
                        let fFrom = Math.max(cut.from, pos) - off, fTo = Math.min(cut.to, nextPos) - off;
                        cut = fFrom >= fTo ? null : new TreeFragment(fFrom, fTo, cut.tree, cut.offset + off, cI > 0, !!nextC);
                    }
                    if (cut)
                        result.push(cut);
                    if (nextF.to > nextPos)
                        break;
                    nextF = fI < fragments.length ? fragments[fI++] : null;
                }
            if (!nextC)
                break;
            pos = nextC.toA;
            off = nextC.toA - nextC.toB;
        }
        return result;
    }
}
/**
A superclass that parsers should extend.
*/
class Parser {
    /**
    Start a parse, returning a [partial parse](#common.PartialParse)
    object. [`fragments`](#common.TreeFragment) can be passed in to
    make the parse incremental.
    
    By default, the entire input is parsed. You can pass `ranges`,
    which should be a sorted array of non-empty, non-overlapping
    ranges, to parse only those ranges. The tree returned in that
    case will start at `ranges[0].from`.
    */
    startParse(input, fragments, ranges) {
        if (typeof input == "string")
            input = new StringInput(input);
        ranges = !ranges ? [new Range(0, input.length)] : ranges.length ? ranges.map(r => new Range(r.from, r.to)) : [new Range(0, 0)];
        return this.createParse(input, fragments || [], ranges);
    }
    /**
    Run a full parse, returning the resulting tree.
    */
    parse(input, fragments, ranges) {
        let parse = this.startParse(input, fragments, ranges);
        for (;;) {
            let done = parse.advance();
            if (done)
                return done;
        }
    }
}
class StringInput {
    constructor(string) {
        this.string = string;
    }
    get length() { return this.string.length; }
    chunk(from) { return this.string.slice(from); }
    get lineChunks() { return false; }
    read(from, to) { return this.string.slice(from, to); }
}

/**
Create a parse wrapper that, after the inner parse completes,
scans its tree for mixed language regions with the `nest`
function, runs the resulting [inner parses](#common.NestedParse),
and then [mounts](#common.NodeProp^mounted) their results onto the
tree.
*/
function parseMixed(nest) {
    return (parse, input, fragments, ranges) => new MixedParse(parse, nest, input, fragments, ranges);
}
class InnerParse {
    constructor(parser, parse, overlay, target, from) {
        this.parser = parser;
        this.parse = parse;
        this.overlay = overlay;
        this.target = target;
        this.from = from;
    }
}
function checkRanges(ranges) {
    if (!ranges.length || ranges.some(r => r.from >= r.to))
        throw new RangeError("Invalid inner parse ranges given: " + JSON.stringify(ranges));
}
class ActiveOverlay {
    constructor(parser, predicate, mounts, index, start, target, prev) {
        this.parser = parser;
        this.predicate = predicate;
        this.mounts = mounts;
        this.index = index;
        this.start = start;
        this.target = target;
        this.prev = prev;
        this.depth = 0;
        this.ranges = [];
    }
}
const stoppedInner = new NodeProp({ perNode: true });
class MixedParse {
    constructor(base, nest, input, fragments, ranges) {
        this.nest = nest;
        this.input = input;
        this.fragments = fragments;
        this.ranges = ranges;
        this.inner = [];
        this.innerDone = 0;
        this.baseTree = null;
        this.stoppedAt = null;
        this.baseParse = base;
    }
    advance() {
        if (this.baseParse) {
            let done = this.baseParse.advance();
            if (!done)
                return null;
            this.baseParse = null;
            this.baseTree = done;
            this.startInner();
            if (this.stoppedAt != null)
                for (let inner of this.inner)
                    inner.parse.stopAt(this.stoppedAt);
        }
        if (this.innerDone == this.inner.length) {
            let result = this.baseTree;
            if (this.stoppedAt != null)
                result = new Tree(result.type, result.children, result.positions, result.length, result.propValues.concat([[stoppedInner, this.stoppedAt]]));
            return result;
        }
        let inner = this.inner[this.innerDone], done = inner.parse.advance();
        if (done) {
            this.innerDone++;
            // This is a somewhat dodgy but super helpful hack where we
            // patch up nodes created by the inner parse (and thus
            // presumably not aliased anywhere else) to hold the information
            // about the inner parse.
            let props = Object.assign(Object.create(null), inner.target.props);
            props[NodeProp.mounted.id] = new MountedTree(done, inner.overlay, inner.parser);
            inner.target.props = props;
        }
        return null;
    }
    get parsedPos() {
        if (this.baseParse)
            return 0;
        let pos = this.input.length;
        for (let i = this.innerDone; i < this.inner.length; i++) {
            if (this.inner[i].from < pos)
                pos = Math.min(pos, this.inner[i].parse.parsedPos);
        }
        return pos;
    }
    stopAt(pos) {
        this.stoppedAt = pos;
        if (this.baseParse)
            this.baseParse.stopAt(pos);
        else
            for (let i = this.innerDone; i < this.inner.length; i++)
                this.inner[i].parse.stopAt(pos);
    }
    startInner() {
        let fragmentCursor = new FragmentCursor(this.fragments);
        let overlay = null;
        let covered = null;
        let cursor = new TreeCursor(new TreeNode(this.baseTree, this.ranges[0].from, 0, null), exports.IterMode.IncludeAnonymous | exports.IterMode.IgnoreMounts);
        scan: for (let nest, isCovered;;) {
            let enter = true, range;
            if (this.stoppedAt != null && cursor.from >= this.stoppedAt) {
                enter = false;
            }
            else if (fragmentCursor.hasNode(cursor)) {
                if (overlay) {
                    let match = overlay.mounts.find(m => m.frag.from <= cursor.from && m.frag.to >= cursor.to && m.mount.overlay);
                    if (match)
                        for (let r of match.mount.overlay) {
                            let from = r.from + match.pos, to = r.to + match.pos;
                            if (from >= cursor.from && to <= cursor.to && !overlay.ranges.some(r => r.from < to && r.to > from))
                                overlay.ranges.push({ from, to });
                        }
                }
                enter = false;
            }
            else if (covered && (isCovered = checkCover(covered.ranges, cursor.from, cursor.to))) {
                enter = isCovered != 2 /* Cover.Full */;
            }
            else if (!cursor.type.isAnonymous && (nest = this.nest(cursor, this.input)) &&
                (cursor.from < cursor.to || !nest.overlay)) {
                if (!cursor.tree)
                    materialize(cursor);
                let oldMounts = fragmentCursor.findMounts(cursor.from, nest.parser);
                if (typeof nest.overlay == "function") {
                    overlay = new ActiveOverlay(nest.parser, nest.overlay, oldMounts, this.inner.length, cursor.from, cursor.tree, overlay);
                }
                else {
                    let ranges = punchRanges(this.ranges, nest.overlay ||
                        (cursor.from < cursor.to ? [new Range(cursor.from, cursor.to)] : []));
                    if (ranges.length)
                        checkRanges(ranges);
                    if (ranges.length || !nest.overlay)
                        this.inner.push(new InnerParse(nest.parser, ranges.length ? nest.parser.startParse(this.input, enterFragments(oldMounts, ranges), ranges)
                            : nest.parser.startParse(""), nest.overlay ? nest.overlay.map(r => new Range(r.from - cursor.from, r.to - cursor.from)) : null, cursor.tree, ranges.length ? ranges[0].from : cursor.from));
                    if (!nest.overlay)
                        enter = false;
                    else if (ranges.length)
                        covered = { ranges, depth: 0, prev: covered };
                }
            }
            else if (overlay && (range = overlay.predicate(cursor))) {
                if (range === true)
                    range = new Range(cursor.from, cursor.to);
                if (range.from < range.to)
                    overlay.ranges.push(range);
            }
            if (enter && cursor.firstChild()) {
                if (overlay)
                    overlay.depth++;
                if (covered)
                    covered.depth++;
            }
            else {
                for (;;) {
                    if (cursor.nextSibling())
                        break;
                    if (!cursor.parent())
                        break scan;
                    if (overlay && !--overlay.depth) {
                        let ranges = punchRanges(this.ranges, overlay.ranges);
                        if (ranges.length) {
                            checkRanges(ranges);
                            this.inner.splice(overlay.index, 0, new InnerParse(overlay.parser, overlay.parser.startParse(this.input, enterFragments(overlay.mounts, ranges), ranges), overlay.ranges.map(r => new Range(r.from - overlay.start, r.to - overlay.start)), overlay.target, ranges[0].from));
                        }
                        overlay = overlay.prev;
                    }
                    if (covered && !--covered.depth)
                        covered = covered.prev;
                }
            }
        }
    }
}
function checkCover(covered, from, to) {
    for (let range of covered) {
        if (range.from >= to)
            break;
        if (range.to > from)
            return range.from <= from && range.to >= to ? 2 /* Cover.Full */ : 1 /* Cover.Partial */;
    }
    return 0 /* Cover.None */;
}
// Take a piece of buffer and convert it into a stand-alone
// TreeBuffer.
function sliceBuf(buf, startI, endI, nodes, positions, off) {
    if (startI < endI) {
        let from = buf.buffer[startI + 1];
        nodes.push(buf.slice(startI, endI, from));
        positions.push(from - off);
    }
}
// This function takes a node that's in a buffer, and converts it, and
// its parent buffer nodes, into a Tree. This is again acting on the
// assumption that the trees and buffers have been constructed by the
// parse that was ran via the mix parser, and thus aren't shared with
// any other code, making violations of the immutability safe.
function materialize(cursor) {
    let { node } = cursor, stack = [];
    let buffer = node.context.buffer;
    // Scan up to the nearest tree
    do {
        stack.push(cursor.index);
        cursor.parent();
    } while (!cursor.tree);
    // Find the index of the buffer in that tree
    let base = cursor.tree, i = base.children.indexOf(buffer);
    let buf = base.children[i], b = buf.buffer, newStack = [i];
    // Split a level in the buffer, putting the nodes before and after
    // the child that contains `node` into new buffers.
    function split(startI, endI, type, innerOffset, length, stackPos) {
        let targetI = stack[stackPos];
        let children = [], positions = [];
        sliceBuf(buf, startI, targetI, children, positions, innerOffset);
        let from = b[targetI + 1], to = b[targetI + 2];
        newStack.push(children.length);
        let child = stackPos
            ? split(targetI + 4, b[targetI + 3], buf.set.types[b[targetI]], from, to - from, stackPos - 1)
            : node.toTree();
        children.push(child);
        positions.push(from - innerOffset);
        sliceBuf(buf, b[targetI + 3], endI, children, positions, innerOffset);
        return new Tree(type, children, positions, length);
    }
    base.children[i] = split(0, b.length, NodeType.none, 0, buf.length, stack.length - 1);
    // Move the cursor back to the target node
    for (let index of newStack) {
        let tree = cursor.tree.children[index], pos = cursor.tree.positions[index];
        cursor.yield(new TreeNode(tree, pos + cursor.from, index, cursor._tree));
    }
}
class StructureCursor {
    constructor(root, offset) {
        this.offset = offset;
        this.done = false;
        this.cursor = root.cursor(exports.IterMode.IncludeAnonymous | exports.IterMode.IgnoreMounts);
    }
    // Move to the first node (in pre-order) that starts at or after `pos`.
    moveTo(pos) {
        let { cursor } = this, p = pos - this.offset;
        while (!this.done && cursor.from < p) {
            if (cursor.to >= pos && cursor.enter(p, 1, exports.IterMode.IgnoreOverlays | exports.IterMode.ExcludeBuffers)) ;
            else if (!cursor.next(false))
                this.done = true;
        }
    }
    hasNode(cursor) {
        this.moveTo(cursor.from);
        if (!this.done && this.cursor.from + this.offset == cursor.from && this.cursor.tree) {
            for (let tree = this.cursor.tree;;) {
                if (tree == cursor.tree)
                    return true;
                if (tree.children.length && tree.positions[0] == 0 && tree.children[0] instanceof Tree)
                    tree = tree.children[0];
                else
                    break;
            }
        }
        return false;
    }
}
class FragmentCursor {
    constructor(fragments) {
        var _a;
        this.fragments = fragments;
        this.curTo = 0;
        this.fragI = 0;
        if (fragments.length) {
            let first = this.curFrag = fragments[0];
            this.curTo = (_a = first.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : first.to;
            this.inner = new StructureCursor(first.tree, -first.offset);
        }
        else {
            this.curFrag = this.inner = null;
        }
    }
    hasNode(node) {
        while (this.curFrag && node.from >= this.curTo)
            this.nextFrag();
        return this.curFrag && this.curFrag.from <= node.from && this.curTo >= node.to && this.inner.hasNode(node);
    }
    nextFrag() {
        var _a;
        this.fragI++;
        if (this.fragI == this.fragments.length) {
            this.curFrag = this.inner = null;
        }
        else {
            let frag = this.curFrag = this.fragments[this.fragI];
            this.curTo = (_a = frag.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : frag.to;
            this.inner = new StructureCursor(frag.tree, -frag.offset);
        }
    }
    findMounts(pos, parser) {
        var _a;
        let result = [];
        if (this.inner) {
            this.inner.cursor.moveTo(pos, 1);
            for (let pos = this.inner.cursor.node; pos; pos = pos.parent) {
                let mount = (_a = pos.tree) === null || _a === void 0 ? void 0 : _a.prop(NodeProp.mounted);
                if (mount && mount.parser == parser) {
                    for (let i = this.fragI; i < this.fragments.length; i++) {
                        let frag = this.fragments[i];
                        if (frag.from >= pos.to)
                            break;
                        if (frag.tree == this.curFrag.tree)
                            result.push({
                                frag,
                                pos: pos.from - frag.offset,
                                mount
                            });
                    }
                }
            }
        }
        return result;
    }
}
function punchRanges(outer, ranges) {
    let copy = null, current = ranges;
    for (let i = 1, j = 0; i < outer.length; i++) {
        let gapFrom = outer[i - 1].to, gapTo = outer[i].from;
        for (; j < current.length; j++) {
            let r = current[j];
            if (r.from >= gapTo)
                break;
            if (r.to <= gapFrom)
                continue;
            if (!copy)
                current = copy = ranges.slice();
            if (r.from < gapFrom) {
                copy[j] = new Range(r.from, gapFrom);
                if (r.to > gapTo)
                    copy.splice(j + 1, 0, new Range(gapTo, r.to));
            }
            else if (r.to > gapTo) {
                copy[j--] = new Range(gapTo, r.to);
            }
            else {
                copy.splice(j--, 1);
            }
        }
    }
    return current;
}
function findCoverChanges(a, b, from, to) {
    let iA = 0, iB = 0, inA = false, inB = false, pos = -1e9;
    let result = [];
    for (;;) {
        let nextA = iA == a.length ? 1e9 : inA ? a[iA].to : a[iA].from;
        let nextB = iB == b.length ? 1e9 : inB ? b[iB].to : b[iB].from;
        if (inA != inB) {
            let start = Math.max(pos, from), end = Math.min(nextA, nextB, to);
            if (start < end)
                result.push(new Range(start, end));
        }
        pos = Math.min(nextA, nextB);
        if (pos == 1e9)
            break;
        if (nextA == pos) {
            if (!inA)
                inA = true;
            else {
                inA = false;
                iA++;
            }
        }
        if (nextB == pos) {
            if (!inB)
                inB = true;
            else {
                inB = false;
                iB++;
            }
        }
    }
    return result;
}
// Given a number of fragments for the outer tree, and a set of ranges
// to parse, find fragments for inner trees mounted around those
// ranges, if any.
function enterFragments(mounts, ranges) {
    let result = [];
    for (let { pos, mount, frag } of mounts) {
        let startPos = pos + (mount.overlay ? mount.overlay[0].from : 0), endPos = startPos + mount.tree.length;
        let from = Math.max(frag.from, startPos), to = Math.min(frag.to, endPos);
        if (mount.overlay) {
            let overlay = mount.overlay.map(r => new Range(r.from + pos, r.to + pos));
            let changes = findCoverChanges(ranges, overlay, from, to);
            for (let i = 0, pos = from;; i++) {
                let last = i == changes.length, end = last ? to : changes[i].from;
                if (end > pos)
                    result.push(new TreeFragment(pos, end, mount.tree, -startPos, frag.from >= pos || frag.openStart, frag.to <= end || frag.openEnd));
                if (last)
                    break;
                pos = changes[i].to;
            }
        }
        else {
            result.push(new TreeFragment(from, to, mount.tree, -startPos, frag.from >= startPos || frag.openStart, frag.to <= endPos || frag.openEnd));
        }
    }
    return result;
}

exports.DefaultBufferLength = DefaultBufferLength;
exports.MountedTree = MountedTree;
exports.NodeProp = NodeProp;
exports.NodeSet = NodeSet;
exports.NodeType = NodeType;
exports.NodeWeakMap = NodeWeakMap;
exports.Parser = Parser;
exports.Tree = Tree;
exports.TreeBuffer = TreeBuffer;
exports.TreeCursor = TreeCursor;
exports.TreeFragment = TreeFragment;
exports.parseMixed = parseMixed;