File size: 37,006 Bytes
bc20498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
/**
The [`TreeFragment.applyChanges`](#common.TreeFragment^applyChanges)
method expects changed ranges in this format.
*/
interface ChangedRange {
    /**
    The start of the change in the start document
    */
    fromA: number;
    /**
    The end of the change in the start document
    */
    toA: number;
    /**
    The start of the replacement in the new document
    */
    fromB: number;
    /**
    The end of the replacement in the new document
    */
    toB: number;
}
/**
Tree fragments are used during [incremental
parsing](#common.Parser.startParse) to track parts of old trees
that can be reused in a new parse. An array of fragments is used
to track regions of an old tree whose nodes might be reused in new
parses. Use the static
[`applyChanges`](#common.TreeFragment^applyChanges) method to
update fragments for document changes.
*/
declare class TreeFragment {
    /**
    The start of the unchanged range pointed to by this fragment.
    This refers to an offset in the _updated_ document (as opposed
    to the original tree).
    */
    readonly from: number;
    /**
    The end of the unchanged range.
    */
    readonly to: number;
    /**
    The tree that this fragment is based on.
    */
    readonly tree: Tree;
    /**
    The offset between the fragment's tree and the document that
    this fragment can be used against. Add this when going from
    document to tree positions, subtract it to go from tree to
    document positions.
    */
    readonly offset: number;
    /**
    Construct a tree fragment. You'll usually want to use
    [`addTree`](#common.TreeFragment^addTree) and
    [`applyChanges`](#common.TreeFragment^applyChanges) instead of
    calling this directly.
    */
    constructor(
    /**
    The start of the unchanged range pointed to by this fragment.
    This refers to an offset in the _updated_ document (as opposed
    to the original tree).
    */
    from: number, 
    /**
    The end of the unchanged range.
    */
    to: number, 
    /**
    The tree that this fragment is based on.
    */
    tree: Tree, 
    /**
    The offset between the fragment's tree and the document that
    this fragment can be used against. Add this when going from
    document to tree positions, subtract it to go from tree to
    document positions.
    */
    offset: number, openStart?: boolean, openEnd?: boolean);
    /**
    Whether the start of the fragment represents the start of a
    parse, or the end of a change. (In the second case, it may not
    be safe to reuse some nodes at the start, depending on the
    parsing algorithm.)
    */
    get openStart(): boolean;
    /**
    Whether the end of the fragment represents the end of a
    full-document parse, or the start of a change.
    */
    get openEnd(): boolean;
    /**
    Create a set of fragments from a freshly parsed tree, or update
    an existing set of fragments by replacing the ones that overlap
    with a tree with content from the new tree. When `partial` is
    true, the parse is treated as incomplete, and the resulting
    fragment has [`openEnd`](#common.TreeFragment.openEnd) set to
    true.
    */
    static addTree(tree: Tree, fragments?: readonly TreeFragment[], partial?: boolean): readonly TreeFragment[];
    /**
    Apply a set of edits to an array of fragments, removing or
    splitting fragments as necessary to remove edited ranges, and
    adjusting offsets for fragments that moved.
    */
    static applyChanges(fragments: readonly TreeFragment[], changes: readonly ChangedRange[], minGap?: number): readonly TreeFragment[];
}
/**
Interface used to represent an in-progress parse, which can be
moved forward piece-by-piece.
*/
interface PartialParse {
    /**
    Advance the parse state by some amount. Will return the finished
    syntax tree when the parse completes.
    */
    advance(): Tree | null;
    /**
    The position up to which the document has been parsed. Note
    that, in multi-pass parsers, this will stay back until the last
    pass has moved past a given position.
    */
    readonly parsedPos: number;
    /**
    Tell the parse to not advance beyond the given position.
    `advance` will return a tree when the parse has reached the
    position. Note that, depending on the parser algorithm and the
    state of the parse when `stopAt` was called, that tree may
    contain nodes beyond the position. It is an error to call
    `stopAt` with a higher position than it's [current
    value](#common.PartialParse.stoppedAt).
    */
    stopAt(pos: number): void;
    /**
    Reports whether `stopAt` has been called on this parse.
    */
    readonly stoppedAt: number | null;
}
/**
A superclass that parsers should extend.
*/
declare abstract class Parser {
    /**
    Start a parse for a single tree. This is the method concrete
    parser implementations must implement. Called by `startParse`,
    with the optional arguments resolved.
    */
    abstract createParse(input: Input, fragments: readonly TreeFragment[], ranges: readonly {
        from: number;
        to: number;
    }[]): PartialParse;
    /**
    Start a parse, returning a [partial parse](#common.PartialParse)
    object. [`fragments`](#common.TreeFragment) can be passed in to
    make the parse incremental.
    
    By default, the entire input is parsed. You can pass `ranges`,
    which should be a sorted array of non-empty, non-overlapping
    ranges, to parse only those ranges. The tree returned in that
    case will start at `ranges[0].from`.
    */
    startParse(input: Input | string, fragments?: readonly TreeFragment[], ranges?: readonly {
        from: number;
        to: number;
    }[]): PartialParse;
    /**
    Run a full parse, returning the resulting tree.
    */
    parse(input: Input | string, fragments?: readonly TreeFragment[], ranges?: readonly {
        from: number;
        to: number;
    }[]): Tree;
}
/**
This is the interface parsers use to access the document. To run
Lezer directly on your own document data structure, you have to
write an implementation of it.
*/
interface Input {
    /**
    The length of the document.
    */
    readonly length: number;
    /**
    Get the chunk after the given position. The returned string
    should start at `from` and, if that isn't the end of the
    document, may be of any length greater than zero.
    */
    chunk(from: number): string;
    /**
    Indicates whether the chunks already end at line breaks, so that
    client code that wants to work by-line can avoid re-scanning
    them for line breaks. When this is true, the result of `chunk()`
    should either be a single line break, or the content between
    `from` and the next line break.
    */
    readonly lineChunks: boolean;
    /**
    Read the part of the document between the given positions.
    */
    read(from: number, to: number): string;
}
/**
Parse wrapper functions are supported by some parsers to inject
additional parsing logic.
*/
type ParseWrapper = (inner: PartialParse, input: Input, fragments: readonly TreeFragment[], ranges: readonly {
    from: number;
    to: number;
}[]) => PartialParse;

/**
The default maximum length of a `TreeBuffer` node.
*/
declare const DefaultBufferLength = 1024;
/**
Each [node type](#common.NodeType) or [individual tree](#common.Tree)
can have metadata associated with it in props. Instances of this
class represent prop names.
*/
declare class NodeProp<T> {
    /**
    Indicates whether this prop is stored per [node
    type](#common.NodeType) or per [tree node](#common.Tree).
    */
    perNode: boolean;
    /**
    A method that deserializes a value of this prop from a string.
    Can be used to allow a prop to be directly written in a grammar
    file.
    */
    deserialize: (str: string) => T;
    /**
    Create a new node prop type.
    */
    constructor(config?: {
        /**
        The [deserialize](#common.NodeProp.deserialize) function to
        use for this prop, used for example when directly providing
        the prop from a grammar file. Defaults to a function that
        raises an error.
        */
        deserialize?: (str: string) => T;
        /**
        By default, node props are stored in the [node
        type](#common.NodeType). It can sometimes be useful to directly
        store information (usually related to the parsing algorithm)
        in [nodes](#common.Tree) themselves. Set this to true to enable
        that for this prop.
        */
        perNode?: boolean;
    });
    /**
    This is meant to be used with
    [`NodeSet.extend`](#common.NodeSet.extend) or
    [`LRParser.configure`](#lr.ParserConfig.props) to compute
    prop values for each node type in the set. Takes a [match
    object](#common.NodeType^match) or function that returns undefined
    if the node type doesn't get this prop, and the prop's value if
    it does.
    */
    add(match: {
        [selector: string]: T;
    } | ((type: NodeType) => T | undefined)): NodePropSource;
    /**
    Prop that is used to describe matching delimiters. For opening
    delimiters, this holds an array of node names (written as a
    space-separated string when declaring this prop in a grammar)
    for the node types of closing delimiters that match it.
    */
    static closedBy: NodeProp<readonly string[]>;
    /**
    The inverse of [`closedBy`](#common.NodeProp^closedBy). This is
    attached to closing delimiters, holding an array of node names
    of types of matching opening delimiters.
    */
    static openedBy: NodeProp<readonly string[]>;
    /**
    Used to assign node types to groups (for example, all node
    types that represent an expression could be tagged with an
    `"Expression"` group).
    */
    static group: NodeProp<readonly string[]>;
    /**
    Attached to nodes to indicate these should be
    [displayed](https://codemirror.net/docs/ref/#language.syntaxTree)
    in a bidirectional text isolate, so that direction-neutral
    characters on their sides don't incorrectly get associated with
    surrounding text. You'll generally want to set this for nodes
    that contain arbitrary text, like strings and comments, and for
    nodes that appear _inside_ arbitrary text, like HTML tags. When
    not given a value, in a grammar declaration, defaults to
    `"auto"`.
    */
    static isolate: NodeProp<"rtl" | "ltr" | "auto">;
    /**
    The hash of the [context](#lr.ContextTracker.constructor)
    that the node was parsed in, if any. Used to limit reuse of
    contextual nodes.
    */
    static contextHash: NodeProp<number>;
    /**
    The distance beyond the end of the node that the tokenizer
    looked ahead for any of the tokens inside the node. (The LR
    parser only stores this when it is larger than 25, for
    efficiency reasons.)
    */
    static lookAhead: NodeProp<number>;
    /**
    This per-node prop is used to replace a given node, or part of a
    node, with another tree. This is useful to include trees from
    different languages in mixed-language parsers.
    */
    static mounted: NodeProp<MountedTree>;
}
/**
A mounted tree, which can be [stored](#common.NodeProp^mounted) on
a tree node to indicate that parts of its content are
represented by another tree.
*/
declare class MountedTree {
    /**
    The inner tree.
    */
    readonly tree: Tree;
    /**
    If this is null, this tree replaces the entire node (it will
    be included in the regular iteration instead of its host
    node). If not, only the given ranges are considered to be
    covered by this tree. This is used for trees that are mixed in
    a way that isn't strictly hierarchical. Such mounted trees are
    only entered by [`resolveInner`](#common.Tree.resolveInner)
    and [`enter`](#common.SyntaxNode.enter).
    */
    readonly overlay: readonly {
        from: number;
        to: number;
    }[] | null;
    /**
    The parser used to create this subtree.
    */
    readonly parser: Parser;
    constructor(
    /**
    The inner tree.
    */
    tree: Tree, 
    /**
    If this is null, this tree replaces the entire node (it will
    be included in the regular iteration instead of its host
    node). If not, only the given ranges are considered to be
    covered by this tree. This is used for trees that are mixed in
    a way that isn't strictly hierarchical. Such mounted trees are
    only entered by [`resolveInner`](#common.Tree.resolveInner)
    and [`enter`](#common.SyntaxNode.enter).
    */
    overlay: readonly {
        from: number;
        to: number;
    }[] | null, 
    /**
    The parser used to create this subtree.
    */
    parser: Parser);
}
/**
Type returned by [`NodeProp.add`](#common.NodeProp.add). Describes
whether a prop should be added to a given node type in a node set,
and what value it should have.
*/
type NodePropSource = (type: NodeType) => null | [NodeProp<any>, any];
/**
Each node in a syntax tree has a node type associated with it.
*/
declare class NodeType {
    /**
    The name of the node type. Not necessarily unique, but if the
    grammar was written properly, different node types with the
    same name within a node set should play the same semantic
    role.
    */
    readonly name: string;
    /**
    The id of this node in its set. Corresponds to the term ids
    used in the parser.
    */
    readonly id: number;
    /**
    Define a node type.
    */
    static define(spec: {
        /**
        The ID of the node type. When this type is used in a
        [set](#common.NodeSet), the ID must correspond to its index in
        the type array.
        */
        id: number;
        /**
        The name of the node type. Leave empty to define an anonymous
        node.
        */
        name?: string;
        /**
        [Node props](#common.NodeProp) to assign to the type. The value
        given for any given prop should correspond to the prop's type.
        */
        props?: readonly ([NodeProp<any>, any] | NodePropSource)[];
        /**
        Whether this is a [top node](#common.NodeType.isTop).
        */
        top?: boolean;
        /**
        Whether this node counts as an [error
        node](#common.NodeType.isError).
        */
        error?: boolean;
        /**
        Whether this node is a [skipped](#common.NodeType.isSkipped)
        node.
        */
        skipped?: boolean;
    }): NodeType;
    /**
    Retrieves a node prop for this type. Will return `undefined` if
    the prop isn't present on this node.
    */
    prop<T>(prop: NodeProp<T>): T | undefined;
    /**
    True when this is the top node of a grammar.
    */
    get isTop(): boolean;
    /**
    True when this node is produced by a skip rule.
    */
    get isSkipped(): boolean;
    /**
    Indicates whether this is an error node.
    */
    get isError(): boolean;
    /**
    When true, this node type doesn't correspond to a user-declared
    named node, for example because it is used to cache repetition.
    */
    get isAnonymous(): boolean;
    /**
    Returns true when this node's name or one of its
    [groups](#common.NodeProp^group) matches the given string.
    */
    is(name: string | number): boolean;
    /**
    An empty dummy node type to use when no actual type is available.
    */
    static none: NodeType;
    /**
    Create a function from node types to arbitrary values by
    specifying an object whose property names are node or
    [group](#common.NodeProp^group) names. Often useful with
    [`NodeProp.add`](#common.NodeProp.add). You can put multiple
    names, separated by spaces, in a single property name to map
    multiple node names to a single value.
    */
    static match<T>(map: {
        [selector: string]: T;
    }): (node: NodeType) => T | undefined;
}
/**
A node set holds a collection of node types. It is used to
compactly represent trees by storing their type ids, rather than a
full pointer to the type object, in a numeric array. Each parser
[has](#lr.LRParser.nodeSet) a node set, and [tree
buffers](#common.TreeBuffer) can only store collections of nodes
from the same set. A set can have a maximum of 2**16 (65536) node
types in it, so that the ids fit into 16-bit typed array slots.
*/
declare class NodeSet {
    /**
    The node types in this set, by id.
    */
    readonly types: readonly NodeType[];
    /**
    Create a set with the given types. The `id` property of each
    type should correspond to its position within the array.
    */
    constructor(
    /**
    The node types in this set, by id.
    */
    types: readonly NodeType[]);
    /**
    Create a copy of this set with some node properties added. The
    arguments to this method can be created with
    [`NodeProp.add`](#common.NodeProp.add).
    */
    extend(...props: NodePropSource[]): NodeSet;
}
/**
Options that control iteration. Can be combined with the `|`
operator to enable multiple ones.
*/
declare enum IterMode {
    /**
    When enabled, iteration will only visit [`Tree`](#common.Tree)
    objects, not nodes packed into
    [`TreeBuffer`](#common.TreeBuffer)s.
    */
    ExcludeBuffers = 1,
    /**
    Enable this to make iteration include anonymous nodes (such as
    the nodes that wrap repeated grammar constructs into a balanced
    tree).
    */
    IncludeAnonymous = 2,
    /**
    By default, regular [mounted](#common.NodeProp^mounted) nodes
    replace their base node in iteration. Enable this to ignore them
    instead.
    */
    IgnoreMounts = 4,
    /**
    This option only applies in
    [`enter`](#common.SyntaxNode.enter)-style methods. It tells the
    library to not enter mounted overlays if one covers the given
    position.
    */
    IgnoreOverlays = 8
}
/**
A piece of syntax tree. There are two ways to approach these
trees: the way they are actually stored in memory, and the
convenient way.

Syntax trees are stored as a tree of `Tree` and `TreeBuffer`
objects. By packing detail information into `TreeBuffer` leaf
nodes, the representation is made a lot more memory-efficient.

However, when you want to actually work with tree nodes, this
representation is very awkward, so most client code will want to
use the [`TreeCursor`](#common.TreeCursor) or
[`SyntaxNode`](#common.SyntaxNode) interface instead, which provides
a view on some part of this data structure, and can be used to
move around to adjacent nodes.
*/
declare class Tree {
    /**
    The type of the top node.
    */
    readonly type: NodeType;
    /**
    This node's child nodes.
    */
    readonly children: readonly (Tree | TreeBuffer)[];
    /**
    The positions (offsets relative to the start of this tree) of
    the children.
    */
    readonly positions: readonly number[];
    /**
    The total length of this tree
    */
    readonly length: number;
    /**
    Construct a new tree. See also [`Tree.build`](#common.Tree^build).
    */
    constructor(
    /**
    The type of the top node.
    */
    type: NodeType, 
    /**
    This node's child nodes.
    */
    children: readonly (Tree | TreeBuffer)[], 
    /**
    The positions (offsets relative to the start of this tree) of
    the children.
    */
    positions: readonly number[], 
    /**
    The total length of this tree
    */
    length: number, 
    /**
    Per-node [node props](#common.NodeProp) to associate with this node.
    */
    props?: readonly [NodeProp<any> | number, any][]);
    /**
    The empty tree
    */
    static empty: Tree;
    /**
    Get a [tree cursor](#common.TreeCursor) positioned at the top of
    the tree. Mode can be used to [control](#common.IterMode) which
    nodes the cursor visits.
    */
    cursor(mode?: IterMode): TreeCursor;
    /**
    Get a [tree cursor](#common.TreeCursor) pointing into this tree
    at the given position and side (see
    [`moveTo`](#common.TreeCursor.moveTo).
    */
    cursorAt(pos: number, side?: -1 | 0 | 1, mode?: IterMode): TreeCursor;
    /**
    Get a [syntax node](#common.SyntaxNode) object for the top of the
    tree.
    */
    get topNode(): SyntaxNode;
    /**
    Get the [syntax node](#common.SyntaxNode) at the given position.
    If `side` is -1, this will move into nodes that end at the
    position. If 1, it'll move into nodes that start at the
    position. With 0, it'll only enter nodes that cover the position
    from both sides.
    
    Note that this will not enter
    [overlays](#common.MountedTree.overlay), and you often want
    [`resolveInner`](#common.Tree.resolveInner) instead.
    */
    resolve(pos: number, side?: -1 | 0 | 1): SyntaxNode;
    /**
    Like [`resolve`](#common.Tree.resolve), but will enter
    [overlaid](#common.MountedTree.overlay) nodes, producing a syntax node
    pointing into the innermost overlaid tree at the given position
    (with parent links going through all parent structure, including
    the host trees).
    */
    resolveInner(pos: number, side?: -1 | 0 | 1): SyntaxNode;
    /**
    In some situations, it can be useful to iterate through all
    nodes around a position, including those in overlays that don't
    directly cover the position. This method gives you an iterator
    that will produce all nodes, from small to big, around the given
    position.
    */
    resolveStack(pos: number, side?: -1 | 0 | 1): NodeIterator;
    /**
    Iterate over the tree and its children, calling `enter` for any
    node that touches the `from`/`to` region (if given) before
    running over such a node's children, and `leave` (if given) when
    leaving the node. When `enter` returns `false`, that node will
    not have its children iterated over (or `leave` called).
    */
    iterate(spec: {
        enter(node: SyntaxNodeRef): boolean | void;
        leave?(node: SyntaxNodeRef): void;
        from?: number;
        to?: number;
        mode?: IterMode;
    }): void;
    /**
    Get the value of the given [node prop](#common.NodeProp) for this
    node. Works with both per-node and per-type props.
    */
    prop<T>(prop: NodeProp<T>): T | undefined;
    /**
    Returns the node's [per-node props](#common.NodeProp.perNode) in a
    format that can be passed to the [`Tree`](#common.Tree)
    constructor.
    */
    get propValues(): readonly [NodeProp<any> | number, any][];
    /**
    Balance the direct children of this tree, producing a copy of
    which may have children grouped into subtrees with type
    [`NodeType.none`](#common.NodeType^none).
    */
    balance(config?: {
        /**
        Function to create the newly balanced subtrees.
        */
        makeTree?: (children: readonly (Tree | TreeBuffer)[], positions: readonly number[], length: number) => Tree;
    }): Tree;
    /**
    Build a tree from a postfix-ordered buffer of node information,
    or a cursor over such a buffer.
    */
    static build(data: BuildData): Tree;
}
/**
Represents a sequence of nodes.
*/
type NodeIterator = {
    node: SyntaxNode;
    next: NodeIterator | null;
};
type BuildData = {
    /**
    The buffer or buffer cursor to read the node data from.
    
    When this is an array, it should contain four values for every
    node in the tree.
    
     - The first holds the node's type, as a node ID pointing into
       the given `NodeSet`.
     - The second holds the node's start offset.
     - The third the end offset.
     - The fourth the amount of space taken up in the array by this
       node and its children. Since there's four values per node,
       this is the total number of nodes inside this node (children
       and transitive children) plus one for the node itself, times
       four.
    
    Parent nodes should appear _after_ child nodes in the array. As
    an example, a node of type 10 spanning positions 0 to 4, with
    two children, of type 11 and 12, might look like this:
    
        [11, 0, 1, 4, 12, 2, 4, 4, 10, 0, 4, 12]
    */
    buffer: BufferCursor | readonly number[];
    /**
    The node types to use.
    */
    nodeSet: NodeSet;
    /**
    The id of the top node type.
    */
    topID: number;
    /**
    The position the tree should start at. Defaults to 0.
    */
    start?: number;
    /**
    The position in the buffer where the function should stop
    reading. Defaults to 0.
    */
    bufferStart?: number;
    /**
    The length of the wrapping node. The end offset of the last
    child is used when not provided.
    */
    length?: number;
    /**
    The maximum buffer length to use. Defaults to
    [`DefaultBufferLength`](#common.DefaultBufferLength).
    */
    maxBufferLength?: number;
    /**
    An optional array holding reused nodes that the buffer can refer
    to.
    */
    reused?: readonly Tree[];
    /**
    The first node type that indicates repeat constructs in this
    grammar.
    */
    minRepeatType?: number;
};
/**
This is used by `Tree.build` as an abstraction for iterating over
a tree buffer. A cursor initially points at the very last element
in the buffer. Every time `next()` is called it moves on to the
previous one.
*/
interface BufferCursor {
    /**
    The current buffer position (four times the number of nodes
    remaining).
    */
    pos: number;
    /**
    The node ID of the next node in the buffer.
    */
    id: number;
    /**
    The start position of the next node in the buffer.
    */
    start: number;
    /**
    The end position of the next node.
    */
    end: number;
    /**
    The size of the next node (the number of nodes inside, counting
    the node itself, times 4).
    */
    size: number;
    /**
    Moves `this.pos` down by 4.
    */
    next(): void;
    /**
    Create a copy of this cursor.
    */
    fork(): BufferCursor;
}
/**
Tree buffers contain (type, start, end, endIndex) quads for each
node. In such a buffer, nodes are stored in prefix order (parents
before children, with the endIndex of the parent indicating which
children belong to it).
*/
declare class TreeBuffer {
    /**
    The buffer's content.
    */
    readonly buffer: Uint16Array;
    /**
    The total length of the group of nodes in the buffer.
    */
    readonly length: number;
    /**
    The node set used in this buffer.
    */
    readonly set: NodeSet;
    /**
    Create a tree buffer.
    */
    constructor(
    /**
    The buffer's content.
    */
    buffer: Uint16Array, 
    /**
    The total length of the group of nodes in the buffer.
    */
    length: number, 
    /**
    The node set used in this buffer.
    */
    set: NodeSet);
}
/**
The set of properties provided by both [`SyntaxNode`](#common.SyntaxNode)
and [`TreeCursor`](#common.TreeCursor). Note that, if you need
an object that is guaranteed to stay stable in the future, you
need to use the [`node`](#common.SyntaxNodeRef.node) accessor.
*/
interface SyntaxNodeRef {
    /**
    The start position of the node.
    */
    readonly from: number;
    /**
    The end position of the node.
    */
    readonly to: number;
    /**
    The type of the node.
    */
    readonly type: NodeType;
    /**
    The name of the node (`.type.name`).
    */
    readonly name: string;
    /**
    Get the [tree](#common.Tree) that represents the current node,
    if any. Will return null when the node is in a [tree
    buffer](#common.TreeBuffer).
    */
    readonly tree: Tree | null;
    /**
    Retrieve a stable [syntax node](#common.SyntaxNode) at this
    position.
    */
    readonly node: SyntaxNode;
    /**
    Test whether the node matches a given context—a sequence of
    direct parent nodes. Empty strings in the context array act as
    wildcards, other strings must match the ancestor node's name.
    */
    matchContext(context: readonly string[]): boolean;
}
/**
A syntax node provides an immutable pointer to a given node in a
tree. When iterating over large amounts of nodes, you may want to
use a mutable [cursor](#common.TreeCursor) instead, which is more
efficient.
*/
interface SyntaxNode extends SyntaxNodeRef {
    /**
    The node's parent node, if any.
    */
    parent: SyntaxNode | null;
    /**
    The first child, if the node has children.
    */
    firstChild: SyntaxNode | null;
    /**
    The node's last child, if available.
    */
    lastChild: SyntaxNode | null;
    /**
    The first child that ends after `pos`.
    */
    childAfter(pos: number): SyntaxNode | null;
    /**
    The last child that starts before `pos`.
    */
    childBefore(pos: number): SyntaxNode | null;
    /**
    Enter the child at the given position. If side is -1 the child
    may end at that position, when 1 it may start there.
    
    This will by default enter
    [overlaid](#common.MountedTree.overlay)
    [mounted](#common.NodeProp^mounted) trees. You can set
    `overlays` to false to disable that.
    
    Similarly, when `buffers` is false this will not enter
    [buffers](#common.TreeBuffer), only [nodes](#common.Tree) (which
    is mostly useful when looking for props, which cannot exist on
    buffer-allocated nodes).
    */
    enter(pos: number, side: -1 | 0 | 1, mode?: IterMode): SyntaxNode | null;
    /**
    This node's next sibling, if any.
    */
    nextSibling: SyntaxNode | null;
    /**
    This node's previous sibling.
    */
    prevSibling: SyntaxNode | null;
    /**
    A [tree cursor](#common.TreeCursor) starting at this node.
    */
    cursor(mode?: IterMode): TreeCursor;
    /**
    Find the node around, before (if `side` is -1), or after (`side`
    is 1) the given position. Will look in parent nodes if the
    position is outside this node.
    */
    resolve(pos: number, side?: -1 | 0 | 1): SyntaxNode;
    /**
    Similar to `resolve`, but enter
    [overlaid](#common.MountedTree.overlay) nodes.
    */
    resolveInner(pos: number, side?: -1 | 0 | 1): SyntaxNode;
    /**
    Move the position to the innermost node before `pos` that looks
    like it is unfinished (meaning it ends in an error node or has a
    child ending in an error node right at its end).
    */
    enterUnfinishedNodesBefore(pos: number): SyntaxNode;
    /**
    Get a [tree](#common.Tree) for this node. Will allocate one if it
    points into a buffer.
    */
    toTree(): Tree;
    /**
    Get the first child of the given type (which may be a [node
    name](#common.NodeType.name) or a [group
    name](#common.NodeProp^group)). If `before` is non-null, only
    return children that occur somewhere after a node with that name
    or group. If `after` is non-null, only return children that
    occur somewhere before a node with that name or group.
    */
    getChild(type: string | number, before?: string | number | null, after?: string | number | null): SyntaxNode | null;
    /**
    Like [`getChild`](#common.SyntaxNode.getChild), but return all
    matching children, not just the first.
    */
    getChildren(type: string | number, before?: string | number | null, after?: string | number | null): SyntaxNode[];
}
/**
A tree cursor object focuses on a given node in a syntax tree, and
allows you to move to adjacent nodes.
*/
declare class TreeCursor implements SyntaxNodeRef {
    /**
    The node's type.
    */
    type: NodeType;
    /**
    Shorthand for `.type.name`.
    */
    get name(): string;
    /**
    The start source offset of this node.
    */
    from: number;
    /**
    The end source offset.
    */
    to: number;
    private stack;
    private bufferNode;
    private yieldNode;
    private yieldBuf;
    /**
    Move the cursor to this node's first child. When this returns
    false, the node has no child, and the cursor has not been moved.
    */
    firstChild(): boolean;
    /**
    Move the cursor to this node's last child.
    */
    lastChild(): boolean;
    /**
    Move the cursor to the first child that ends after `pos`.
    */
    childAfter(pos: number): boolean;
    /**
    Move to the last child that starts before `pos`.
    */
    childBefore(pos: number): boolean;
    /**
    Move the cursor to the child around `pos`. If side is -1 the
    child may end at that position, when 1 it may start there. This
    will also enter [overlaid](#common.MountedTree.overlay)
    [mounted](#common.NodeProp^mounted) trees unless `overlays` is
    set to false.
    */
    enter(pos: number, side: -1 | 0 | 1, mode?: IterMode): boolean;
    /**
    Move to the node's parent node, if this isn't the top node.
    */
    parent(): boolean;
    /**
    Move to this node's next sibling, if any.
    */
    nextSibling(): boolean;
    /**
    Move to this node's previous sibling, if any.
    */
    prevSibling(): boolean;
    private atLastNode;
    private move;
    /**
    Move to the next node in a
    [pre-order](https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR)
    traversal, going from a node to its first child or, if the
    current node is empty or `enter` is false, its next sibling or
    the next sibling of the first parent node that has one.
    */
    next(enter?: boolean): boolean;
    /**
    Move to the next node in a last-to-first pre-order traveral. A
    node is followed by its last child or, if it has none, its
    previous sibling or the previous sibling of the first parent
    node that has one.
    */
    prev(enter?: boolean): boolean;
    /**
    Move the cursor to the innermost node that covers `pos`. If
    `side` is -1, it will enter nodes that end at `pos`. If it is 1,
    it will enter nodes that start at `pos`.
    */
    moveTo(pos: number, side?: -1 | 0 | 1): this;
    /**
    Get a [syntax node](#common.SyntaxNode) at the cursor's current
    position.
    */
    get node(): SyntaxNode;
    /**
    Get the [tree](#common.Tree) that represents the current node, if
    any. Will return null when the node is in a [tree
    buffer](#common.TreeBuffer).
    */
    get tree(): Tree | null;
    /**
    Iterate over the current node and all its descendants, calling
    `enter` when entering a node and `leave`, if given, when leaving
    one. When `enter` returns `false`, any children of that node are
    skipped, and `leave` isn't called for it.
    */
    iterate(enter: (node: SyntaxNodeRef) => boolean | void, leave?: (node: SyntaxNodeRef) => void): void;
    /**
    Test whether the current node matches a given context—a sequence
    of direct parent node names. Empty strings in the context array
    are treated as wildcards.
    */
    matchContext(context: readonly string[]): boolean;
}
/**
Provides a way to associate values with pieces of trees. As long
as that part of the tree is reused, the associated values can be
retrieved from an updated tree.
*/
declare class NodeWeakMap<T> {
    private map;
    private setBuffer;
    private getBuffer;
    /**
    Set the value for this syntax node.
    */
    set(node: SyntaxNode, value: T): void;
    /**
    Retrieve value for this syntax node, if it exists in the map.
    */
    get(node: SyntaxNode): T | undefined;
    /**
    Set the value for the node that a cursor currently points to.
    */
    cursorSet(cursor: TreeCursor, value: T): void;
    /**
    Retrieve the value for the node that a cursor currently points
    to.
    */
    cursorGet(cursor: TreeCursor): T | undefined;
}

/**
Objects returned by the function passed to
[`parseMixed`](#common.parseMixed) should conform to this
interface.
*/
interface NestedParse {
    /**
    The parser to use for the inner region.
    */
    parser: Parser;
    /**
    When this property is not given, the entire node is parsed with
    this parser, and it is [mounted](#common.NodeProp^mounted) as a
    non-overlay node, replacing its host node in tree iteration.
    
    When an array of ranges is given, only those ranges are parsed,
    and the tree is mounted as an
    [overlay](#common.MountedTree.overlay).
    
    When a function is given, that function will be called for
    descendant nodes of the target node, not including child nodes
    that are covered by another nested parse, to determine the
    overlay ranges. When it returns true, the entire descendant is
    included, otherwise just the range given. The mixed parser will
    optimize range-finding in reused nodes, which means it's a good
    idea to use a function here when the target node is expected to
    have a large, deep structure.
    */
    overlay?: readonly {
        from: number;
        to: number;
    }[] | ((node: SyntaxNodeRef) => {
        from: number;
        to: number;
    } | boolean);
}
/**
Create a parse wrapper that, after the inner parse completes,
scans its tree for mixed language regions with the `nest`
function, runs the resulting [inner parses](#common.NestedParse),
and then [mounts](#common.NodeProp^mounted) their results onto the
tree.
*/
declare function parseMixed(nest: (node: SyntaxNodeRef, input: Input) => NestedParse | null): ParseWrapper;

export { BufferCursor, ChangedRange, DefaultBufferLength, Input, IterMode, MountedTree, NestedParse, NodeIterator, NodeProp, NodePropSource, NodeSet, NodeType, NodeWeakMap, ParseWrapper, Parser, PartialParse, SyntaxNode, SyntaxNodeRef, Tree, TreeBuffer, TreeCursor, TreeFragment, parseMixed };