File size: 10,008 Bytes
c3b1078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
from argparse import ArgumentParser
from collections import OrderedDict
from typing import List
from text_processing.data_loader_utils import post_process_punctuation, pre_process
from text_processing.token_parser import PRESERVE_ORDER_KEY, TokenParser
from tqdm import tqdm
try:
import pynini
PYNINI_AVAILABLE = True
except (ModuleNotFoundError, ImportError):
PYNINI_AVAILABLE = False
try:
from text_processing.moses_tokenizers import MosesProcessor
NLP_AVAILABLE = True
except (ModuleNotFoundError, ImportError):
NLP_AVAILABLE = False
class Normalizer:
"""
Normalizer class that converts text from written to spoken form.
Useful for TTS preprocessing.
Args:
input_case: expected input capitalization
lang: language specifying the TN rules, by default: English
cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache.
overwrite_cache: set to True to overwrite .far files
whitelist: path to a file with whitelist replacements
"""
def __init__(
self,
input_case: str,
lang: str = 'en',
deterministic: bool = True,
cache_dir: str = None,
overwrite_cache: bool = False,
whitelist: str = None,
):
raise NotImplementedError
# self.tagger = ClassifyFst(
# input_case=input_case,
# deterministic=deterministic,
# cache_dir=cache_dir,
# overwrite_cache=overwrite_cache,
# whitelist=whitelist,
# )
# self.verbalizer = VerbalizeFinalFst(deterministic=deterministic)
# self.parser = TokenParser()
# self.lang = lang
# if NLP_AVAILABLE:
# self.processor = MosesProcessor(lang_id=lang)
# else:
# self.processor = None
# print("NeMo NLP is not available. Moses de-tokenization will be skipped.")
def normalize_list(self, texts: List[str], verbose=False) -> List[str]:
"""
NeMo text normalizer
Args:
texts: list of input strings
verbose: whether to print intermediate meta information
Returns converted list input strings
"""
res = []
for input in tqdm(texts):
try:
text = self.normalize(input, verbose=verbose)
except:
print(input)
raise Exception
res.append(text)
return res
def normalize(
self, text: str, verbose: bool = False, punct_pre_process: bool = False, punct_post_process: bool = False
) -> str:
"""
Main function. Normalizes tokens from written to spoken form
e.g. 12 kg -> twelve kilograms
Args:
text: string that may include semiotic classes
verbose: whether to print intermediate meta information
punct_pre_process: whether to perform punctuation pre-processing, for example, [25] -> [ 25 ]
punct_post_process: whether to normalize punctuation
Returns: spoken form
"""
if punct_pre_process:
text = pre_process(text)
text = text.strip()
if not text:
if verbose:
print(text)
return text
text = pynini.escape(text)
tagged_lattice = self.find_tags(text)
# if verbose:
# print(tagged_lattice)
tagged_text = self.select_tag(tagged_lattice)
if verbose:
print(tagged_text)
self.parser(tagged_text)
tokens = self.parser.parse()
tags_reordered = self.generate_permutations(tokens)
for tagged_text in tags_reordered:
tagged_text = pynini.escape(tagged_text)
verbalizer_lattice = self.find_verbalizer(tagged_text)
if verbalizer_lattice.num_states() == 0:
continue
output = self.select_verbalizer(verbalizer_lattice)
if punct_post_process:
output = post_process_punctuation(output)
# do post-processing based on Moses detokenizer
if self.processor:
output = self.processor.detokenize([output])
return output
raise ValueError()
def _permute(self, d: OrderedDict) -> List[str]:
"""
Creates reorderings of dictionary elements and serializes as strings
Args:
d: (nested) dictionary of key value pairs
Return permutations of different string serializations of key value pairs
"""
l = []
if PRESERVE_ORDER_KEY in d.keys():
d_permutations = [d.items()]
else:
d_permutations = itertools.permutations(d.items())
for perm in d_permutations:
subl = [""]
for k, v in perm:
if isinstance(v, str):
subl = ["".join(x) for x in itertools.product(subl, [f"{k}: \"{v}\" "])]
elif isinstance(v, OrderedDict):
rec = self._permute(v)
subl = ["".join(x) for x in itertools.product(subl, [f" {k} {{ "], rec, [f" }} "])]
elif isinstance(v, bool):
subl = ["".join(x) for x in itertools.product(subl, [f"{k}: true "])]
else:
raise ValueError()
l.extend(subl)
return l
def generate_permutations(self, tokens: List[dict]):
"""
Generates permutations of string serializations of list of dictionaries
Args:
tokens: list of dictionaries
Returns string serialization of list of dictionaries
"""
def _helper(prefix: str, tokens: List[dict], idx: int):
"""
Generates permutations of string serializations of given dictionary
Args:
tokens: list of dictionaries
prefix: prefix string
idx: index of next dictionary
Returns string serialization of dictionary
"""
if idx == len(tokens):
yield prefix
return
token_options = self._permute(tokens[idx])
for token_option in token_options:
yield from _helper(prefix + token_option, tokens, idx + 1)
return _helper("", tokens, 0)
def find_tags(self, text: str) -> 'pynini.FstLike':
"""
Given text use tagger Fst to tag text
Args:
text: sentence
Returns: tagged lattice
"""
lattice = text @ self.tagger.fst
return lattice
def select_tag(self, lattice: 'pynini.FstLike') -> str:
"""
Given tagged lattice return shortest path
Args:
tagged_text: tagged text
Returns: shortest path
"""
tagged_text = pynini.shortestpath(lattice, nshortest=1, unique=True).string()
return tagged_text
def find_verbalizer(self, tagged_text: str) -> 'pynini.FstLike':
"""
Given tagged text creates verbalization lattice
This is context-independent.
Args:
tagged_text: input text
Returns: verbalized lattice
"""
lattice = tagged_text @ self.verbalizer.fst
return lattice
def select_verbalizer(self, lattice: 'pynini.FstLike') -> str:
"""
Given verbalized lattice return shortest path
Args:
lattice: verbalization lattice
Returns: shortest path
"""
output = pynini.shortestpath(lattice, nshortest=1, unique=True).string()
return output
def parse_args():
parser = ArgumentParser()
parser.add_argument("input_string", help="input string", type=str)
parser.add_argument("--language", help="language", choices=["en"], default="en", type=str)
parser.add_argument(
"--input_case", help="input capitalization", choices=["lower_cased", "cased"], default="cased", type=str
)
parser.add_argument("--verbose", help="print info for debugging", action='store_true')
parser.add_argument(
"--punct_post_process", help="set to True to enable punctuation post processing", action="store_true"
)
parser.add_argument(
"--punct_pre_process", help="set to True to enable punctuation pre processing", action="store_true"
)
parser.add_argument("--overwrite_cache", help="set to True to re-create .far grammar files", action="store_true")
parser.add_argument("--whitelist", help="path to a file with with whitelist", default=None, type=str)
parser.add_argument(
"--cache_dir",
help="path to a dir with .far grammar file. Set to None to avoid using cache",
default=None,
type=str,
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
whitelist = os.path.abspath(args.whitelist) if args.whitelist else None
normalizer = Normalizer(
input_case=args.input_case, cache_dir=args.cache_dir, overwrite_cache=args.overwrite_cache, whitelist=whitelist
)
print(
normalizer.normalize(
args.input_string,
verbose=args.verbose,
punct_pre_process=args.punct_pre_process,
punct_post_process=args.punct_post_process,
)
)
|