File size: 6,527 Bytes
aeda668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os

from faster_whisper import BatchedInferencePipeline, WhisperModel, decode_audio
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.transcribe import get_suppressed_tokens


def test_supported_languages():
    model = WhisperModel("tiny.en")
    assert model.supported_languages == ["en"]


def test_transcribe(jfk_path):
    model = WhisperModel("tiny")
    segments, info = model.transcribe(jfk_path, word_timestamps=True)
    assert info.all_language_probs is not None

    assert info.language == "en"
    assert info.language_probability > 0.9
    assert info.duration == 11

    # Get top language info from all results, which should match the
    # already existing metadata
    top_lang, top_lang_score = info.all_language_probs[0]
    assert info.language == top_lang
    assert abs(info.language_probability - top_lang_score) < 1e-16

    segments = list(segments)

    assert len(segments) == 1

    segment = segments[0]

    assert segment.text == (
        " And so my fellow Americans ask not what your country can do for you, "
        "ask what you can do for your country."
    )

    assert segment.text == "".join(word.word for word in segment.words)
    assert segment.start == segment.words[0].start
    assert segment.end == segment.words[-1].end
    batched_model = BatchedInferencePipeline(model=model, use_vad_model=False)
    result, info = batched_model.transcribe(jfk_path, word_timestamps=True)
    assert info.language == "en"
    assert info.language_probability > 0.7
    segments = []
    for segment in result:
        segments.append(
            {"start": segment.start, "end": segment.end, "text": segment.text}
        )

    assert len(segments) == 1
    assert segment.text == (
        " And so my fellow Americans ask not what your country can do for you, "
        "ask what you can do for your country."
    )


def test_batched_transcribe(physcisworks_path):
    model = WhisperModel("tiny")
    batched_model = BatchedInferencePipeline(model=model)
    result, info = batched_model.transcribe(physcisworks_path, batch_size=16)
    assert info.language == "en"
    assert info.language_probability > 0.7
    segments = []
    for segment in result:
        segments.append(
            {"start": segment.start, "end": segment.end, "text": segment.text}
        )
    # number of near 30 sec segments
    assert len(segments) == 8

    result, info = batched_model.transcribe(
        physcisworks_path,
        batch_size=16,
        without_timestamps=False,
        word_timestamps=True,
    )
    segments = []
    for segment in result:
        assert segment.words is not None
        segments.append(
            {"start": segment.start, "end": segment.end, "text": segment.text}
        )
    assert len(segments) > 8


def test_prefix_with_timestamps(jfk_path):
    model = WhisperModel("tiny")
    segments, _ = model.transcribe(jfk_path, prefix="And so my fellow Americans")
    segments = list(segments)

    assert len(segments) == 1

    segment = segments[0]

    assert segment.text == (
        " And so my fellow Americans ask not what your country can do for you, "
        "ask what you can do for your country."
    )

    assert segment.start == 0
    assert 10 < segment.end < 11


def test_vad(jfk_path):
    model = WhisperModel("tiny")
    segments, info = model.transcribe(
        jfk_path,
        vad_filter=True,
        vad_parameters=dict(min_silence_duration_ms=500, speech_pad_ms=200),
    )
    segments = list(segments)

    assert len(segments) == 1
    segment = segments[0]

    assert segment.text == (
        " And so my fellow Americans ask not what your country can do for you, "
        "ask what you can do for your country."
    )

    assert 0 < segment.start < 1
    assert 10 < segment.end < 11

    assert info.vad_options.min_silence_duration_ms == 500
    assert info.vad_options.speech_pad_ms == 200


def test_stereo_diarization(data_dir):
    model = WhisperModel("tiny")

    audio_path = os.path.join(data_dir, "stereo_diarization.wav")
    left, right = decode_audio(audio_path, split_stereo=True)

    segments, _ = model.transcribe(left)
    transcription = "".join(segment.text for segment in segments).strip()
    assert transcription == (
        "He began a confused complaint against the wizard, "
        "who had vanished behind the curtain on the left."
    )

    segments, _ = model.transcribe(right)
    transcription = "".join(segment.text for segment in segments).strip()
    assert transcription == "The horizon seems extremely distant."


def test_multisegment_lang_id(physcisworks_path):
    model = WhisperModel("tiny")
    language_info = model.detect_language_multi_segment(physcisworks_path)
    assert language_info["language_code"] == "en"
    assert language_info["language_confidence"] > 0.8


def test_suppressed_tokens_minus_1():
    model = WhisperModel("tiny.en")

    tokenizer = Tokenizer(model.hf_tokenizer, False)
    tokens = get_suppressed_tokens(tokenizer, [-1])
    assert tokens == (
        1,
        2,
        7,
        8,
        9,
        10,
        14,
        25,
        26,
        27,
        28,
        29,
        31,
        58,
        59,
        60,
        61,
        62,
        63,
        90,
        91,
        92,
        93,
        357,
        366,
        438,
        532,
        685,
        705,
        796,
        930,
        1058,
        1220,
        1267,
        1279,
        1303,
        1343,
        1377,
        1391,
        1635,
        1782,
        1875,
        2162,
        2361,
        2488,
        3467,
        4008,
        4211,
        4600,
        4808,
        5299,
        5855,
        6329,
        7203,
        9609,
        9959,
        10563,
        10786,
        11420,
        11709,
        11907,
        13163,
        13697,
        13700,
        14808,
        15306,
        16410,
        16791,
        17992,
        19203,
        19510,
        20724,
        22305,
        22935,
        27007,
        30109,
        30420,
        33409,
        34949,
        40283,
        40493,
        40549,
        47282,
        49146,
        50257,
        50357,
        50358,
        50359,
        50360,
    )


def test_suppressed_tokens_minus_value():
    model = WhisperModel("tiny.en")

    tokenizer = Tokenizer(model.hf_tokenizer, False)
    tokens = get_suppressed_tokens(tokenizer, [13])
    assert tokens == (13, 50257, 50357, 50358, 50359, 50360)