|
(function (global, factory) { |
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : |
|
typeof define === 'function' && define.amd ? define(['exports'], factory) : |
|
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.predicates = {})); |
|
})(this, (function (exports) { 'use strict'; |
|
|
|
const epsilon = 1.1102230246251565e-16; |
|
const splitter = 134217729; |
|
const resulterrbound = (3 + 8 * epsilon) * epsilon; |
|
|
|
|
|
function sum(elen, e, flen, f, h) { |
|
let Q, Qnew, hh, bvirt; |
|
let enow = e[0]; |
|
let fnow = f[0]; |
|
let eindex = 0; |
|
let findex = 0; |
|
if ((fnow > enow) === (fnow > -enow)) { |
|
Q = enow; |
|
enow = e[++eindex]; |
|
} else { |
|
Q = fnow; |
|
fnow = f[++findex]; |
|
} |
|
let hindex = 0; |
|
if (eindex < elen && findex < flen) { |
|
if ((fnow > enow) === (fnow > -enow)) { |
|
Qnew = enow + Q; |
|
hh = Q - (Qnew - enow); |
|
enow = e[++eindex]; |
|
} else { |
|
Qnew = fnow + Q; |
|
hh = Q - (Qnew - fnow); |
|
fnow = f[++findex]; |
|
} |
|
Q = Qnew; |
|
if (hh !== 0) { |
|
h[hindex++] = hh; |
|
} |
|
while (eindex < elen && findex < flen) { |
|
if ((fnow > enow) === (fnow > -enow)) { |
|
Qnew = Q + enow; |
|
bvirt = Qnew - Q; |
|
hh = Q - (Qnew - bvirt) + (enow - bvirt); |
|
enow = e[++eindex]; |
|
} else { |
|
Qnew = Q + fnow; |
|
bvirt = Qnew - Q; |
|
hh = Q - (Qnew - bvirt) + (fnow - bvirt); |
|
fnow = f[++findex]; |
|
} |
|
Q = Qnew; |
|
if (hh !== 0) { |
|
h[hindex++] = hh; |
|
} |
|
} |
|
} |
|
while (eindex < elen) { |
|
Qnew = Q + enow; |
|
bvirt = Qnew - Q; |
|
hh = Q - (Qnew - bvirt) + (enow - bvirt); |
|
enow = e[++eindex]; |
|
Q = Qnew; |
|
if (hh !== 0) { |
|
h[hindex++] = hh; |
|
} |
|
} |
|
while (findex < flen) { |
|
Qnew = Q + fnow; |
|
bvirt = Qnew - Q; |
|
hh = Q - (Qnew - bvirt) + (fnow - bvirt); |
|
fnow = f[++findex]; |
|
Q = Qnew; |
|
if (hh !== 0) { |
|
h[hindex++] = hh; |
|
} |
|
} |
|
if (Q !== 0 || hindex === 0) { |
|
h[hindex++] = Q; |
|
} |
|
return hindex; |
|
} |
|
|
|
function sum_three(alen, a, blen, b, clen, c, tmp, out) { |
|
return sum(sum(alen, a, blen, b, tmp), tmp, clen, c, out); |
|
} |
|
|
|
|
|
function scale(elen, e, b, h) { |
|
let Q, sum, hh, product1, product0; |
|
let bvirt, c, ahi, alo, bhi, blo; |
|
|
|
c = splitter * b; |
|
bhi = c - (c - b); |
|
blo = b - bhi; |
|
let enow = e[0]; |
|
Q = enow * b; |
|
c = splitter * enow; |
|
ahi = c - (c - enow); |
|
alo = enow - ahi; |
|
hh = alo * blo - (Q - ahi * bhi - alo * bhi - ahi * blo); |
|
let hindex = 0; |
|
if (hh !== 0) { |
|
h[hindex++] = hh; |
|
} |
|
for (let i = 1; i < elen; i++) { |
|
enow = e[i]; |
|
product1 = enow * b; |
|
c = splitter * enow; |
|
ahi = c - (c - enow); |
|
alo = enow - ahi; |
|
product0 = alo * blo - (product1 - ahi * bhi - alo * bhi - ahi * blo); |
|
sum = Q + product0; |
|
bvirt = sum - Q; |
|
hh = Q - (sum - bvirt) + (product0 - bvirt); |
|
if (hh !== 0) { |
|
h[hindex++] = hh; |
|
} |
|
Q = product1 + sum; |
|
hh = sum - (Q - product1); |
|
if (hh !== 0) { |
|
h[hindex++] = hh; |
|
} |
|
} |
|
if (Q !== 0 || hindex === 0) { |
|
h[hindex++] = Q; |
|
} |
|
return hindex; |
|
} |
|
|
|
function negate(elen, e) { |
|
for (let i = 0; i < elen; i++) e[i] = -e[i]; |
|
return elen; |
|
} |
|
|
|
function estimate(elen, e) { |
|
let Q = e[0]; |
|
for (let i = 1; i < elen; i++) Q += e[i]; |
|
return Q; |
|
} |
|
|
|
function vec(n) { |
|
return new Float64Array(n); |
|
} |
|
|
|
const isperrboundA = (16 + 224 * epsilon) * epsilon; |
|
const isperrboundB = (5 + 72 * epsilon) * epsilon; |
|
const isperrboundC = (71 + 1408 * epsilon) * epsilon * epsilon; |
|
|
|
const ab = vec(4); |
|
const bc = vec(4); |
|
const cd = vec(4); |
|
const de = vec(4); |
|
const ea = vec(4); |
|
const ac = vec(4); |
|
const bd = vec(4); |
|
const ce = vec(4); |
|
const da = vec(4); |
|
const eb = vec(4); |
|
|
|
const abc = vec(24); |
|
const bcd = vec(24); |
|
const cde = vec(24); |
|
const dea = vec(24); |
|
const eab = vec(24); |
|
const abd = vec(24); |
|
const bce = vec(24); |
|
const cda = vec(24); |
|
const deb = vec(24); |
|
const eac = vec(24); |
|
|
|
const adet = vec(1152); |
|
const bdet = vec(1152); |
|
const cdet = vec(1152); |
|
const ddet = vec(1152); |
|
const edet = vec(1152); |
|
const abdet = vec(2304); |
|
const cddet = vec(2304); |
|
const cdedet = vec(3456); |
|
const deter = vec(5760); |
|
|
|
const _8 = vec(8); |
|
const _8b = vec(8); |
|
const _8c = vec(8); |
|
const _16 = vec(16); |
|
const _24 = vec(24); |
|
const _48 = vec(48); |
|
const _48b = vec(48); |
|
const _96 = vec(96); |
|
const _192 = vec(192); |
|
const _384x = vec(384); |
|
const _384y = vec(384); |
|
const _384z = vec(384); |
|
const _768 = vec(768); |
|
|
|
function sum_three_scale(a, b, c, az, bz, cz, out) { |
|
return sum_three( |
|
scale(4, a, az, _8), _8, |
|
scale(4, b, bz, _8b), _8b, |
|
scale(4, c, cz, _8c), _8c, _16, out); |
|
} |
|
|
|
function liftexact(alen, a, blen, b, clen, c, dlen, d, x, y, z, out) { |
|
const len = sum( |
|
sum(alen, a, blen, b, _48), _48, |
|
negate(sum(clen, c, dlen, d, _48b), _48b), _48b, _96); |
|
|
|
return sum_three( |
|
scale(scale(len, _96, x, _192), _192, x, _384x), _384x, |
|
scale(scale(len, _96, y, _192), _192, y, _384y), _384y, |
|
scale(scale(len, _96, z, _192), _192, z, _384z), _384z, _768, out); |
|
} |
|
|
|
function insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) { |
|
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3; |
|
|
|
s1 = ax * by; |
|
c = splitter * ax; |
|
ahi = c - (c - ax); |
|
alo = ax - ahi; |
|
c = splitter * by; |
|
bhi = c - (c - by); |
|
blo = by - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = bx * ay; |
|
c = splitter * bx; |
|
ahi = c - (c - bx); |
|
alo = bx - ahi; |
|
c = splitter * ay; |
|
bhi = c - (c - ay); |
|
blo = ay - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
ab[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
ab[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
ab[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
ab[3] = u3; |
|
s1 = bx * cy; |
|
c = splitter * bx; |
|
ahi = c - (c - bx); |
|
alo = bx - ahi; |
|
c = splitter * cy; |
|
bhi = c - (c - cy); |
|
blo = cy - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = cx * by; |
|
c = splitter * cx; |
|
ahi = c - (c - cx); |
|
alo = cx - ahi; |
|
c = splitter * by; |
|
bhi = c - (c - by); |
|
blo = by - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
bc[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
bc[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
bc[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
bc[3] = u3; |
|
s1 = cx * dy; |
|
c = splitter * cx; |
|
ahi = c - (c - cx); |
|
alo = cx - ahi; |
|
c = splitter * dy; |
|
bhi = c - (c - dy); |
|
blo = dy - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = dx * cy; |
|
c = splitter * dx; |
|
ahi = c - (c - dx); |
|
alo = dx - ahi; |
|
c = splitter * cy; |
|
bhi = c - (c - cy); |
|
blo = cy - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
cd[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
cd[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
cd[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
cd[3] = u3; |
|
s1 = dx * ey; |
|
c = splitter * dx; |
|
ahi = c - (c - dx); |
|
alo = dx - ahi; |
|
c = splitter * ey; |
|
bhi = c - (c - ey); |
|
blo = ey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = ex * dy; |
|
c = splitter * ex; |
|
ahi = c - (c - ex); |
|
alo = ex - ahi; |
|
c = splitter * dy; |
|
bhi = c - (c - dy); |
|
blo = dy - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
de[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
de[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
de[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
de[3] = u3; |
|
s1 = ex * ay; |
|
c = splitter * ex; |
|
ahi = c - (c - ex); |
|
alo = ex - ahi; |
|
c = splitter * ay; |
|
bhi = c - (c - ay); |
|
blo = ay - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = ax * ey; |
|
c = splitter * ax; |
|
ahi = c - (c - ax); |
|
alo = ax - ahi; |
|
c = splitter * ey; |
|
bhi = c - (c - ey); |
|
blo = ey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
ea[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
ea[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
ea[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
ea[3] = u3; |
|
s1 = ax * cy; |
|
c = splitter * ax; |
|
ahi = c - (c - ax); |
|
alo = ax - ahi; |
|
c = splitter * cy; |
|
bhi = c - (c - cy); |
|
blo = cy - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = cx * ay; |
|
c = splitter * cx; |
|
ahi = c - (c - cx); |
|
alo = cx - ahi; |
|
c = splitter * ay; |
|
bhi = c - (c - ay); |
|
blo = ay - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
ac[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
ac[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
ac[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
ac[3] = u3; |
|
s1 = bx * dy; |
|
c = splitter * bx; |
|
ahi = c - (c - bx); |
|
alo = bx - ahi; |
|
c = splitter * dy; |
|
bhi = c - (c - dy); |
|
blo = dy - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = dx * by; |
|
c = splitter * dx; |
|
ahi = c - (c - dx); |
|
alo = dx - ahi; |
|
c = splitter * by; |
|
bhi = c - (c - by); |
|
blo = by - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
bd[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
bd[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
bd[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
bd[3] = u3; |
|
s1 = cx * ey; |
|
c = splitter * cx; |
|
ahi = c - (c - cx); |
|
alo = cx - ahi; |
|
c = splitter * ey; |
|
bhi = c - (c - ey); |
|
blo = ey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = ex * cy; |
|
c = splitter * ex; |
|
ahi = c - (c - ex); |
|
alo = ex - ahi; |
|
c = splitter * cy; |
|
bhi = c - (c - cy); |
|
blo = cy - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
ce[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
ce[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
ce[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
ce[3] = u3; |
|
s1 = dx * ay; |
|
c = splitter * dx; |
|
ahi = c - (c - dx); |
|
alo = dx - ahi; |
|
c = splitter * ay; |
|
bhi = c - (c - ay); |
|
blo = ay - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = ax * dy; |
|
c = splitter * ax; |
|
ahi = c - (c - ax); |
|
alo = ax - ahi; |
|
c = splitter * dy; |
|
bhi = c - (c - dy); |
|
blo = dy - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
da[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
da[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
da[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
da[3] = u3; |
|
s1 = ex * by; |
|
c = splitter * ex; |
|
ahi = c - (c - ex); |
|
alo = ex - ahi; |
|
c = splitter * by; |
|
bhi = c - (c - by); |
|
blo = by - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = bx * ey; |
|
c = splitter * bx; |
|
ahi = c - (c - bx); |
|
alo = bx - ahi; |
|
c = splitter * ey; |
|
bhi = c - (c - ey); |
|
blo = ey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
eb[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
eb[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
u3 = _j + _i; |
|
bvirt = u3 - _j; |
|
eb[2] = _j - (u3 - bvirt) + (_i - bvirt); |
|
eb[3] = u3; |
|
|
|
const abclen = sum_three_scale(ab, bc, ac, cz, az, -bz, abc); |
|
const bcdlen = sum_three_scale(bc, cd, bd, dz, bz, -cz, bcd); |
|
const cdelen = sum_three_scale(cd, de, ce, ez, cz, -dz, cde); |
|
const dealen = sum_three_scale(de, ea, da, az, dz, -ez, dea); |
|
const eablen = sum_three_scale(ea, ab, eb, bz, ez, -az, eab); |
|
const abdlen = sum_three_scale(ab, bd, da, dz, az, bz, abd); |
|
const bcelen = sum_three_scale(bc, ce, eb, ez, bz, cz, bce); |
|
const cdalen = sum_three_scale(cd, da, ac, az, cz, dz, cda); |
|
const deblen = sum_three_scale(de, eb, bd, bz, dz, ez, deb); |
|
const eaclen = sum_three_scale(ea, ac, ce, cz, ez, az, eac); |
|
|
|
const deterlen = sum_three( |
|
liftexact(cdelen, cde, bcelen, bce, deblen, deb, bcdlen, bcd, ax, ay, az, adet), adet, |
|
liftexact(dealen, dea, cdalen, cda, eaclen, eac, cdelen, cde, bx, by, bz, bdet), bdet, |
|
sum_three( |
|
liftexact(eablen, eab, deblen, deb, abdlen, abd, dealen, dea, cx, cy, cz, cdet), cdet, |
|
liftexact(abclen, abc, eaclen, eac, bcelen, bce, eablen, eab, dx, dy, dz, ddet), ddet, |
|
liftexact(bcdlen, bcd, abdlen, abd, cdalen, cda, abclen, abc, ex, ey, ez, edet), edet, cddet, cdedet), cdedet, abdet, deter); |
|
|
|
return deter[deterlen - 1]; |
|
} |
|
|
|
const xdet = vec(96); |
|
const ydet = vec(96); |
|
const zdet = vec(96); |
|
const fin = vec(1152); |
|
|
|
function liftadapt(a, b, c, az, bz, cz, x, y, z, out) { |
|
const len = sum_three_scale(a, b, c, az, bz, cz, _24); |
|
return sum_three( |
|
scale(scale(len, _24, x, _48), _48, x, xdet), xdet, |
|
scale(scale(len, _24, y, _48), _48, y, ydet), ydet, |
|
scale(scale(len, _24, z, _48), _48, z, zdet), zdet, _192, out); |
|
} |
|
|
|
function insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent) { |
|
let ab3, bc3, cd3, da3, ac3, bd3; |
|
|
|
let aextail, bextail, cextail, dextail; |
|
let aeytail, beytail, ceytail, deytail; |
|
let aeztail, beztail, ceztail, deztail; |
|
|
|
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0; |
|
|
|
const aex = ax - ex; |
|
const bex = bx - ex; |
|
const cex = cx - ex; |
|
const dex = dx - ex; |
|
const aey = ay - ey; |
|
const bey = by - ey; |
|
const cey = cy - ey; |
|
const dey = dy - ey; |
|
const aez = az - ez; |
|
const bez = bz - ez; |
|
const cez = cz - ez; |
|
const dez = dz - ez; |
|
|
|
s1 = aex * bey; |
|
c = splitter * aex; |
|
ahi = c - (c - aex); |
|
alo = aex - ahi; |
|
c = splitter * bey; |
|
bhi = c - (c - bey); |
|
blo = bey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = bex * aey; |
|
c = splitter * bex; |
|
ahi = c - (c - bex); |
|
alo = bex - ahi; |
|
c = splitter * aey; |
|
bhi = c - (c - aey); |
|
blo = aey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
ab[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
ab[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
ab3 = _j + _i; |
|
bvirt = ab3 - _j; |
|
ab[2] = _j - (ab3 - bvirt) + (_i - bvirt); |
|
ab[3] = ab3; |
|
s1 = bex * cey; |
|
c = splitter * bex; |
|
ahi = c - (c - bex); |
|
alo = bex - ahi; |
|
c = splitter * cey; |
|
bhi = c - (c - cey); |
|
blo = cey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = cex * bey; |
|
c = splitter * cex; |
|
ahi = c - (c - cex); |
|
alo = cex - ahi; |
|
c = splitter * bey; |
|
bhi = c - (c - bey); |
|
blo = bey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
bc[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
bc[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
bc3 = _j + _i; |
|
bvirt = bc3 - _j; |
|
bc[2] = _j - (bc3 - bvirt) + (_i - bvirt); |
|
bc[3] = bc3; |
|
s1 = cex * dey; |
|
c = splitter * cex; |
|
ahi = c - (c - cex); |
|
alo = cex - ahi; |
|
c = splitter * dey; |
|
bhi = c - (c - dey); |
|
blo = dey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = dex * cey; |
|
c = splitter * dex; |
|
ahi = c - (c - dex); |
|
alo = dex - ahi; |
|
c = splitter * cey; |
|
bhi = c - (c - cey); |
|
blo = cey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
cd[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
cd[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
cd3 = _j + _i; |
|
bvirt = cd3 - _j; |
|
cd[2] = _j - (cd3 - bvirt) + (_i - bvirt); |
|
cd[3] = cd3; |
|
s1 = dex * aey; |
|
c = splitter * dex; |
|
ahi = c - (c - dex); |
|
alo = dex - ahi; |
|
c = splitter * aey; |
|
bhi = c - (c - aey); |
|
blo = aey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = aex * dey; |
|
c = splitter * aex; |
|
ahi = c - (c - aex); |
|
alo = aex - ahi; |
|
c = splitter * dey; |
|
bhi = c - (c - dey); |
|
blo = dey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
da[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
da[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
da3 = _j + _i; |
|
bvirt = da3 - _j; |
|
da[2] = _j - (da3 - bvirt) + (_i - bvirt); |
|
da[3] = da3; |
|
s1 = aex * cey; |
|
c = splitter * aex; |
|
ahi = c - (c - aex); |
|
alo = aex - ahi; |
|
c = splitter * cey; |
|
bhi = c - (c - cey); |
|
blo = cey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = cex * aey; |
|
c = splitter * cex; |
|
ahi = c - (c - cex); |
|
alo = cex - ahi; |
|
c = splitter * aey; |
|
bhi = c - (c - aey); |
|
blo = aey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
ac[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
ac[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
ac3 = _j + _i; |
|
bvirt = ac3 - _j; |
|
ac[2] = _j - (ac3 - bvirt) + (_i - bvirt); |
|
ac[3] = ac3; |
|
s1 = bex * dey; |
|
c = splitter * bex; |
|
ahi = c - (c - bex); |
|
alo = bex - ahi; |
|
c = splitter * dey; |
|
bhi = c - (c - dey); |
|
blo = dey - bhi; |
|
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); |
|
t1 = dex * bey; |
|
c = splitter * dex; |
|
ahi = c - (c - dex); |
|
alo = dex - ahi; |
|
c = splitter * bey; |
|
bhi = c - (c - bey); |
|
blo = bey - bhi; |
|
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); |
|
_i = s0 - t0; |
|
bvirt = s0 - _i; |
|
bd[0] = s0 - (_i + bvirt) + (bvirt - t0); |
|
_j = s1 + _i; |
|
bvirt = _j - s1; |
|
_0 = s1 - (_j - bvirt) + (_i - bvirt); |
|
_i = _0 - t1; |
|
bvirt = _0 - _i; |
|
bd[1] = _0 - (_i + bvirt) + (bvirt - t1); |
|
bd3 = _j + _i; |
|
bvirt = bd3 - _j; |
|
bd[2] = _j - (bd3 - bvirt) + (_i - bvirt); |
|
bd[3] = bd3; |
|
|
|
const finlen = sum( |
|
sum( |
|
negate(liftadapt(bc, cd, bd, dez, bez, -cez, aex, aey, aez, adet), adet), adet, |
|
liftadapt(cd, da, ac, aez, cez, dez, bex, bey, bez, bdet), bdet, abdet), abdet, |
|
sum( |
|
negate(liftadapt(da, ab, bd, bez, dez, aez, cex, cey, cez, cdet), cdet), cdet, |
|
liftadapt(ab, bc, ac, cez, aez, -bez, dex, dey, dez, ddet), ddet, cddet), cddet, fin); |
|
|
|
let det = estimate(finlen, fin); |
|
let errbound = isperrboundB * permanent; |
|
if (det >= errbound || -det >= errbound) { |
|
return det; |
|
} |
|
|
|
bvirt = ax - aex; |
|
aextail = ax - (aex + bvirt) + (bvirt - ex); |
|
bvirt = ay - aey; |
|
aeytail = ay - (aey + bvirt) + (bvirt - ey); |
|
bvirt = az - aez; |
|
aeztail = az - (aez + bvirt) + (bvirt - ez); |
|
bvirt = bx - bex; |
|
bextail = bx - (bex + bvirt) + (bvirt - ex); |
|
bvirt = by - bey; |
|
beytail = by - (bey + bvirt) + (bvirt - ey); |
|
bvirt = bz - bez; |
|
beztail = bz - (bez + bvirt) + (bvirt - ez); |
|
bvirt = cx - cex; |
|
cextail = cx - (cex + bvirt) + (bvirt - ex); |
|
bvirt = cy - cey; |
|
ceytail = cy - (cey + bvirt) + (bvirt - ey); |
|
bvirt = cz - cez; |
|
ceztail = cz - (cez + bvirt) + (bvirt - ez); |
|
bvirt = dx - dex; |
|
dextail = dx - (dex + bvirt) + (bvirt - ex); |
|
bvirt = dy - dey; |
|
deytail = dy - (dey + bvirt) + (bvirt - ey); |
|
bvirt = dz - dez; |
|
deztail = dz - (dez + bvirt) + (bvirt - ez); |
|
if (aextail === 0 && aeytail === 0 && aeztail === 0 && |
|
bextail === 0 && beytail === 0 && beztail === 0 && |
|
cextail === 0 && ceytail === 0 && ceztail === 0 && |
|
dextail === 0 && deytail === 0 && deztail === 0) { |
|
return det; |
|
} |
|
|
|
errbound = isperrboundC * permanent + resulterrbound * Math.abs(det); |
|
|
|
const abeps = (aex * beytail + bey * aextail) - (aey * bextail + bex * aeytail); |
|
const bceps = (bex * ceytail + cey * bextail) - (bey * cextail + cex * beytail); |
|
const cdeps = (cex * deytail + dey * cextail) - (cey * dextail + dex * ceytail); |
|
const daeps = (dex * aeytail + aey * dextail) - (dey * aextail + aex * deytail); |
|
const aceps = (aex * ceytail + cey * aextail) - (aey * cextail + cex * aeytail); |
|
const bdeps = (bex * deytail + dey * bextail) - (bey * dextail + dex * beytail); |
|
det += |
|
(((bex * bex + bey * bey + bez * bez) * ((cez * daeps + dez * aceps + aez * cdeps) + |
|
(ceztail * da3 + deztail * ac3 + aeztail * cd3)) + (dex * dex + dey * dey + dez * dez) * |
|
((aez * bceps - bez * aceps + cez * abeps) + (aeztail * bc3 - beztail * ac3 + ceztail * ab3))) - |
|
((aex * aex + aey * aey + aez * aez) * ((bez * cdeps - cez * bdeps + dez * bceps) + |
|
(beztail * cd3 - ceztail * bd3 + deztail * bc3)) + (cex * cex + cey * cey + cez * cez) * |
|
((dez * abeps + aez * bdeps + bez * daeps) + (deztail * ab3 + aeztail * bd3 + beztail * da3)))) + |
|
2 * (((bex * bextail + bey * beytail + bez * beztail) * (cez * da3 + dez * ac3 + aez * cd3) + |
|
(dex * dextail + dey * deytail + dez * deztail) * (aez * bc3 - bez * ac3 + cez * ab3)) - |
|
((aex * aextail + aey * aeytail + aez * aeztail) * (bez * cd3 - cez * bd3 + dez * bc3) + |
|
(cex * cextail + cey * ceytail + cez * ceztail) * (dez * ab3 + aez * bd3 + bez * da3))); |
|
|
|
if (det >= errbound || -det >= errbound) { |
|
return det; |
|
} |
|
|
|
return insphereexact(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez); |
|
} |
|
|
|
function insphere(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez) { |
|
const aex = ax - ex; |
|
const bex = bx - ex; |
|
const cex = cx - ex; |
|
const dex = dx - ex; |
|
const aey = ay - ey; |
|
const bey = by - ey; |
|
const cey = cy - ey; |
|
const dey = dy - ey; |
|
const aez = az - ez; |
|
const bez = bz - ez; |
|
const cez = cz - ez; |
|
const dez = dz - ez; |
|
|
|
const aexbey = aex * bey; |
|
const bexaey = bex * aey; |
|
const ab = aexbey - bexaey; |
|
const bexcey = bex * cey; |
|
const cexbey = cex * bey; |
|
const bc = bexcey - cexbey; |
|
const cexdey = cex * dey; |
|
const dexcey = dex * cey; |
|
const cd = cexdey - dexcey; |
|
const dexaey = dex * aey; |
|
const aexdey = aex * dey; |
|
const da = dexaey - aexdey; |
|
const aexcey = aex * cey; |
|
const cexaey = cex * aey; |
|
const ac = aexcey - cexaey; |
|
const bexdey = bex * dey; |
|
const dexbey = dex * bey; |
|
const bd = bexdey - dexbey; |
|
|
|
const alift = aex * aex + aey * aey + aez * aez; |
|
const blift = bex * bex + bey * bey + bez * bez; |
|
const clift = cex * cex + cey * cey + cez * cez; |
|
const dlift = dex * dex + dey * dey + dez * dez; |
|
|
|
const det = |
|
(clift * (dez * ab + aez * bd + bez * da) - dlift * (aez * bc - bez * ac + cez * ab)) + |
|
(alift * (bez * cd - cez * bd + dez * bc) - blift * (cez * da + dez * ac + aez * cd)); |
|
|
|
const aezplus = Math.abs(aez); |
|
const bezplus = Math.abs(bez); |
|
const cezplus = Math.abs(cez); |
|
const dezplus = Math.abs(dez); |
|
const aexbeyplus = Math.abs(aexbey) + Math.abs(bexaey); |
|
const bexceyplus = Math.abs(bexcey) + Math.abs(cexbey); |
|
const cexdeyplus = Math.abs(cexdey) + Math.abs(dexcey); |
|
const dexaeyplus = Math.abs(dexaey) + Math.abs(aexdey); |
|
const aexceyplus = Math.abs(aexcey) + Math.abs(cexaey); |
|
const bexdeyplus = Math.abs(bexdey) + Math.abs(dexbey); |
|
const permanent = |
|
(cexdeyplus * bezplus + bexdeyplus * cezplus + bexceyplus * dezplus) * alift + |
|
(dexaeyplus * cezplus + aexceyplus * dezplus + cexdeyplus * aezplus) * blift + |
|
(aexbeyplus * dezplus + bexdeyplus * aezplus + dexaeyplus * bezplus) * clift + |
|
(bexceyplus * aezplus + aexceyplus * bezplus + aexbeyplus * cezplus) * dlift; |
|
|
|
const errbound = isperrboundA * permanent; |
|
if (det > errbound || -det > errbound) { |
|
return det; |
|
} |
|
return -insphereadapt(ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, permanent); |
|
} |
|
|
|
function inspherefast(pax, pay, paz, pbx, pby, pbz, pcx, pcy, pcz, pdx, pdy, pdz, pex, pey, pez) { |
|
const aex = pax - pex; |
|
const bex = pbx - pex; |
|
const cex = pcx - pex; |
|
const dex = pdx - pex; |
|
const aey = pay - pey; |
|
const bey = pby - pey; |
|
const cey = pcy - pey; |
|
const dey = pdy - pey; |
|
const aez = paz - pez; |
|
const bez = pbz - pez; |
|
const cez = pcz - pez; |
|
const dez = pdz - pez; |
|
|
|
const ab = aex * bey - bex * aey; |
|
const bc = bex * cey - cex * bey; |
|
const cd = cex * dey - dex * cey; |
|
const da = dex * aey - aex * dey; |
|
const ac = aex * cey - cex * aey; |
|
const bd = bex * dey - dex * bey; |
|
|
|
const abc = aez * bc - bez * ac + cez * ab; |
|
const bcd = bez * cd - cez * bd + dez * bc; |
|
const cda = cez * da + dez * ac + aez * cd; |
|
const dab = dez * ab + aez * bd + bez * da; |
|
|
|
const alift = aex * aex + aey * aey + aez * aez; |
|
const blift = bex * bex + bey * bey + bez * bez; |
|
const clift = cex * cex + cey * cey + cez * cez; |
|
const dlift = dex * dex + dey * dey + dez * dez; |
|
|
|
return (clift * dab - dlift * abc) + (alift * bcd - blift * cda); |
|
} |
|
|
|
exports.insphere = insphere; |
|
exports.inspherefast = inspherefast; |
|
|
|
})); |
|
|