"""Wrapper of Seq2Labels model. Fixes errors based on model predictions""" from collections import defaultdict from difflib import SequenceMatcher import logging import re from time import time from typing import List, Union import torch from transformers import AutoTokenizer from gector.modeling_seq2labels import Seq2LabelsModel from gector.vocabulary import Vocabulary from gector.utils import PAD, UNK, START_TOKEN, get_target_sent_by_edits logging.getLogger("werkzeug").setLevel(logging.ERROR) logger = logging.getLogger(__file__) class GecBERTModel(torch.nn.Module): def __init__( self, vocab_path=None, model_paths=None, weights=None, device=None, max_len=64, min_len=3, lowercase_tokens=False, log=False, iterations=3, min_error_probability=0.0, confidence=0, resolve_cycles=False, split_chunk=False, chunk_size=48, overlap_size=12, min_words_cut=6, punc_dict={':', ".", ",", "?"}, ): r""" Args: vocab_path (`str`): Path to vocabulary directory. model_paths (`List[str]`): List of model paths. weights (`int`, *Optional*, defaults to None): Weights of each model. Only relevant if `is_ensemble is True`. device (`int`, *Optional*, defaults to None): Device to load model. If not set, device will be automatically choose. max_len (`int`, defaults to 64): Max sentence length to be processed (all longer will be truncated). min_len (`int`, defaults to 3): Min sentence length to be processed (all shorted will be returned w/o changes). lowercase_tokens (`bool`, defaults to False): Whether to lowercase tokens. log (`bool`, defaults to False): Whether to enable logging. iterations (`int`, defaults to 3): Max iterations to run during inference. special_tokens_fix (`bool`, defaults to True): Whether to fix problem with [CLS], [SEP] tokens tokenization. min_error_probability (`float`, defaults to `0.0`): Minimum probability for each action to apply. confidence (`float`, defaults to `0.0`): How many probability to add to $KEEP token. split_chunk (`bool`, defaults to False): Whether to split long sentences to multiple segments of `chunk_size`. !Warning: if `chunk_size > max_len`, each segment will be truncate to `max_len`. chunk_size (`int`, defaults to 48): Length of each segment (in words). Only relevant if `split_chunk is True`. overlap_size (`int`, defaults to 12): Overlap size (in words) between two consecutive segments. Only relevant if `split_chunk is True`. min_words_cut (`int`, defaults to 6): Minimun number of words to be cut while merging two consecutive segments. Only relevant if `split_chunk is True`. punc_dict (List[str], defaults to `{':', ".", ",", "?"}`): List of punctuations. """ super().__init__() if isinstance(model_paths, str): model_paths = [model_paths] self.model_weights = list(map(float, weights)) if weights else [1] * len(model_paths) self.device = ( torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else torch.device(device) ) self.max_len = max_len self.min_len = min_len self.lowercase_tokens = lowercase_tokens self.min_error_probability = min_error_probability self.vocab = Vocabulary.from_files(vocab_path) self.incorr_index = self.vocab.get_token_index("INCORRECT", "d_tags") self.log = log self.iterations = iterations self.confidence = confidence self.resolve_cycles = resolve_cycles assert ( chunk_size > 0 and chunk_size // 2 >= overlap_size ), "Chunk merging required overlap size must be smaller than half of chunk size" self.split_chunk = split_chunk self.chunk_size = chunk_size self.overlap_size = overlap_size self.min_words_cut = min_words_cut self.stride = chunk_size - overlap_size self.punc_dict = punc_dict self.punc_str = '[' + ''.join([f'\{x}' for x in punc_dict]) + ']' # set training parameters and operations self.indexers = [] self.models = [] for model_path in model_paths: model = Seq2LabelsModel.from_pretrained(model_path) config = model.config model_name = config.pretrained_name_or_path special_tokens_fix = config.special_tokens_fix self.indexers.append(self._get_indexer(model_name, special_tokens_fix)) model.eval().to(self.device) self.models.append(model) def _get_indexer(self, weights_name, special_tokens_fix): tokenizer = AutoTokenizer.from_pretrained( weights_name, do_basic_tokenize=False, do_lower_case=self.lowercase_tokens, model_max_length=1024 ) # to adjust all tokenizers if hasattr(tokenizer, 'encoder'): tokenizer.vocab = tokenizer.encoder if hasattr(tokenizer, 'sp_model'): tokenizer.vocab = defaultdict(lambda: 1) for i in range(tokenizer.sp_model.get_piece_size()): tokenizer.vocab[tokenizer.sp_model.id_to_piece(i)] = i if special_tokens_fix: tokenizer.add_tokens([START_TOKEN]) tokenizer.vocab[START_TOKEN] = len(tokenizer) - 1 return tokenizer def forward(self, text: Union[str, List[str], List[List[str]]], is_split_into_words=False): # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if not _is_valid_text_input(text): raise ValueError( "text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) " "or `List[List[str]]` (batch of pretokenized examples)." ) if is_split_into_words: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) if is_batched: text = [x.split() for x in text] else: text = text.split() if not is_batched: text = [text] return self.handle_batch(text) def split_chunks(self, batch): # return batch pairs of indices result = [] indices = [] for tokens in batch: start = len(result) num_token = len(tokens) if num_token <= self.chunk_size: result.append(tokens) elif num_token > self.chunk_size and num_token < (self.chunk_size * 2 - self.overlap_size): split_idx = (num_token + self.overlap_size + 1) // 2 result.append(tokens[:split_idx]) result.append(tokens[split_idx - self.overlap_size :]) else: for i in range(0, num_token - self.overlap_size, self.stride): result.append(tokens[i : i + self.chunk_size]) indices.append((start, len(result))) return result, indices def check_alnum(self, s): if len(s) < 2: return False return not (s.isalpha() or s.isdigit()) def apply_chunk_merging(self, tokens, next_tokens): # Return next tokens if current tokens list is empty if not tokens: return next_tokens source_token_idx = [] target_token_idx = [] source_tokens = [] target_tokens = [] num_keep = self.overlap_size - self.min_words_cut i = 0 while len(source_token_idx) < self.overlap_size and -i < len(tokens): i -= 1 if tokens[i] not in self.punc_dict: source_token_idx.insert(0, i) source_tokens.insert(0, tokens[i].lower()) i = 0 while len(target_token_idx) < self.overlap_size and i < len(next_tokens): if next_tokens[i] not in self.punc_dict: target_token_idx.append(i) target_tokens.append(next_tokens[i].lower()) i += 1 matcher = SequenceMatcher(None, source_tokens, target_tokens) diffs = list(matcher.get_opcodes()) for diff in diffs: tag, i1, i2, j1, j2 = diff if tag == "equal": if i1 >= num_keep: tail_idx = source_token_idx[i1] head_idx = target_token_idx[j1] break elif i2 > num_keep: tail_idx = source_token_idx[num_keep] head_idx = target_token_idx[j2 - i2 + num_keep] break elif tag == "delete" and i1 == 0: num_keep += i2 // 2 tokens = tokens[:tail_idx] + next_tokens[head_idx:] return tokens def merge_chunks(self, batch): result = [] if len(batch) == 1 or self.overlap_size == 0: for sub_tokens in batch: result.extend(sub_tokens) else: for _, sub_tokens in enumerate(batch): try: result = self.apply_chunk_merging(result, sub_tokens) except Exception as e: print(e) result = " ".join(result) return result def predict(self, batches): t11 = time() predictions = [] for batch, model in zip(batches, self.models): batch = batch.to(self.device) with torch.no_grad(): prediction = model.forward(**batch) predictions.append(prediction) preds, idx, error_probs = self._convert(predictions) t55 = time() if self.log: print(f"Inference time {t55 - t11}") return preds, idx, error_probs def get_token_action(self, token, index, prob, sugg_token): """Get lost of suggested actions for token.""" # cases when we don't need to do anything if prob < self.min_error_probability or sugg_token in [UNK, PAD, '$KEEP']: return None if sugg_token.startswith('$REPLACE_') or sugg_token.startswith('$TRANSFORM_') or sugg_token == '$DELETE': start_pos = index end_pos = index + 1 elif sugg_token.startswith("$APPEND_") or sugg_token.startswith("$MERGE_"): start_pos = index + 1 end_pos = index + 1 if sugg_token == "$DELETE": sugg_token_clear = "" elif sugg_token.startswith('$TRANSFORM_') or sugg_token.startswith("$MERGE_"): sugg_token_clear = sugg_token[:] else: sugg_token_clear = sugg_token[sugg_token.index('_') + 1 :] return start_pos - 1, end_pos - 1, sugg_token_clear, prob def preprocess(self, token_batch): seq_lens = [len(sequence) for sequence in token_batch if sequence] if not seq_lens: return [] max_len = min(max(seq_lens), self.max_len) batches = [] for indexer in self.indexers: token_batch = [[START_TOKEN] + sequence[:max_len] for sequence in token_batch] batch = indexer( token_batch, return_tensors="pt", padding=True, is_split_into_words=True, truncation=True, add_special_tokens=False, ) offset_batch = [] for i in range(len(token_batch)): word_ids = batch.word_ids(batch_index=i) offsets = [0] for i in range(1, len(word_ids)): if word_ids[i] != word_ids[i - 1]: offsets.append(i) offset_batch.append(torch.LongTensor(offsets)) batch["input_offsets"] = torch.nn.utils.rnn.pad_sequence( offset_batch, batch_first=True, padding_value=0 ).to(torch.long) batches.append(batch) return batches def _convert(self, data): all_class_probs = torch.zeros_like(data[0]['logits']) error_probs = torch.zeros_like(data[0]['max_error_probability']) for output, weight in zip(data, self.model_weights): class_probabilities_labels = torch.softmax(output['logits'], dim=-1) all_class_probs += weight * class_probabilities_labels / sum(self.model_weights) class_probabilities_d = torch.softmax(output['detect_logits'], dim=-1) error_probs_d = class_probabilities_d[:, :, self.incorr_index] incorr_prob = torch.max(error_probs_d, dim=-1)[0] error_probs += weight * incorr_prob / sum(self.model_weights) max_vals = torch.max(all_class_probs, dim=-1) probs = max_vals[0].tolist() idx = max_vals[1].tolist() return probs, idx, error_probs.tolist() def update_final_batch(self, final_batch, pred_ids, pred_batch, prev_preds_dict): new_pred_ids = [] total_updated = 0 for i, orig_id in enumerate(pred_ids): orig = final_batch[orig_id] pred = pred_batch[i] prev_preds = prev_preds_dict[orig_id] if orig != pred and pred not in prev_preds: final_batch[orig_id] = pred new_pred_ids.append(orig_id) prev_preds_dict[orig_id].append(pred) total_updated += 1 elif orig != pred and pred in prev_preds: # update final batch, but stop iterations final_batch[orig_id] = pred total_updated += 1 else: continue return final_batch, new_pred_ids, total_updated def postprocess_batch(self, batch, all_probabilities, all_idxs, error_probs): all_results = [] noop_index = self.vocab.get_token_index("$KEEP", "labels") for tokens, probabilities, idxs, error_prob in zip(batch, all_probabilities, all_idxs, error_probs): length = min(len(tokens), self.max_len) edits = [] # skip whole sentences if there no errors if max(idxs) == 0: all_results.append(tokens) continue # skip whole sentence if probability of correctness is not high if error_prob < self.min_error_probability: all_results.append(tokens) continue for i in range(length + 1): # because of START token if i == 0: token = START_TOKEN else: token = tokens[i - 1] # skip if there is no error if idxs[i] == noop_index: continue sugg_token = self.vocab.get_token_from_index(idxs[i], namespace='labels') action = self.get_token_action(token, i, probabilities[i], sugg_token) if not action: continue edits.append(action) all_results.append(get_target_sent_by_edits(tokens, edits)) return all_results def handle_batch(self, full_batch, merge_punc=True): """ Handle batch of requests. """ if self.split_chunk: full_batch, indices = self.split_chunks(full_batch) else: indices = None final_batch = full_batch[:] batch_size = len(full_batch) prev_preds_dict = {i: [final_batch[i]] for i in range(len(final_batch))} short_ids = [i for i in range(len(full_batch)) if len(full_batch[i]) < self.min_len] pred_ids = [i for i in range(len(full_batch)) if i not in short_ids] total_updates = 0 for n_iter in range(self.iterations): orig_batch = [final_batch[i] for i in pred_ids] sequences = self.preprocess(orig_batch) if not sequences: break probabilities, idxs, error_probs = self.predict(sequences) pred_batch = self.postprocess_batch(orig_batch, probabilities, idxs, error_probs) if self.log: print(f"Iteration {n_iter + 1}. Predicted {round(100*len(pred_ids)/batch_size, 1)}% of sentences.") final_batch, pred_ids, cnt = self.update_final_batch(final_batch, pred_ids, pred_batch, prev_preds_dict) total_updates += cnt if not pred_ids: break if self.split_chunk: final_batch = [self.merge_chunks(final_batch[start:end]) for (start, end) in indices] else: final_batch = [" ".join(x) for x in final_batch] if merge_punc: final_batch = [re.sub(r'\s+(%s)' % self.punc_str, r'\1', x) for x in final_batch] return final_batch