import re from typing import List, Optional from pydantic import BaseModel from schemas import OpenAIChatMessage import os import requests import json from utils.pipelines.main import ( get_last_user_message, add_or_update_system_message, get_tools_specs, ) class Pipeline: class Valves(BaseModel): # List target pipeline ids (models) that this filter will be connected to. # If you want to connect this filter to all pipelines, you can set pipelines to ["*"] pipelines: List[str] = [] # Assign a priority level to the filter pipeline. # The priority level determines the order in which the filter pipelines are executed. # The lower the number, the higher the priority. priority: int = 0 # Valves for function calling OPENAI_API_BASE_URL: str OPENAI_API_KEY: str TASK_MODEL: str TEMPLATE: str def __init__(self): # Pipeline filters are only compatible with Open WebUI # You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API. self.type = "filter" # Optionally, you can set the id and name of the pipeline. # Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline. # The identifier must be unique across all pipelines. # The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes. # self.id = "function_calling_blueprint" self.name = "Function Calling Blueprint" # Initialize valves self.valves = self.Valves( **{ "pipelines": ["*"], # Connect to all pipelines "OPENAI_API_BASE_URL": os.getenv( "OPENAI_API_BASE_URL", "https://api.openai.com/v1" ), "OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "YOUR_OPENAI_API_KEY"), "TASK_MODEL": os.getenv("TASK_MODEL", "gpt-3.5-turbo"), "TEMPLATE": """Use the following context as your learned knowledge, inside XML tags. {{CONTEXT}} When answer to user: - If you don't know, just say that you don't know. - If you don't know when you are not sure, ask for clarification. Avoid mentioning that you obtained the information from the context. And answer according to the language of the user's question.""", } ) async def on_startup(self): # This function is called when the server is started. print(f"on_startup:{__name__}") pass async def on_shutdown(self): # This function is called when the server is stopped. print(f"on_shutdown:{__name__}") pass async def inlet(self, body: dict, user: Optional[dict] = None) -> dict: # If title generation is requested, skip the function calling filter if body.get("title", False): return body print(f"pipe:{__name__}") print(user) # Get the last user message user_message = get_last_user_message(body["messages"]) # Get the tools specs tools_specs = get_tools_specs(self.tools) # System prompt for function calling fc_system_prompt = ( f"Tools: {json.dumps(tools_specs, indent=2)}" + """ If a function tool doesn't match the query, return an empty string. Else, pick a function tool, fill in the parameters from the function tool's schema, and return it in the format { "name": "functionName", "parameters": { "key": "value" } }. Only pick a function if the user asks. Only return the object. Do not return any other text. Ensure that the model returns the correct function format regardless of the user's language. """ ) #print(fc_system_prompt) r = None try: # Call the OpenAI API to get the function response r = requests.post( url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions", json={ "model": self.valves.TASK_MODEL, "messages": [ { "role": "system", "content": fc_system_prompt, }, { "role": "user", "content": "History:\n" + "\n".join( [ f"{message['role']}: {message['content']}" for message in body["messages"][::-1][:4] ] ) + f"Query: {user_message}", }, ], # TODO: dynamically add response_format? # "response_format": {"type": "json_object"}, }, headers={ "Authorization": f"Bearer {self.valves.OPENAI_API_KEY}", "Content-Type": "application/json", }, stream=False, ) r.raise_for_status() response = r.json() content = response["choices"][0]["message"]["content"] # Parse the function response if content != "": print(content) content = re.sub(r"```json", "", content) content = re.sub(r"```", "", content) result = json.loads(content) #print(result) # Call the function if "name" in result: function = getattr(self.tools, result["name"]) function_result = None try: function_result = function(**result["parameters"]) except Exception as e: print(e) # Add the function result to the system prompt if function_result: system_prompt = self.valves.TEMPLATE.replace( "{{CONTEXT}}", function_result ) #print(system_prompt) messages = add_or_update_system_message( system_prompt, body["messages"] ) # Return the updated messages return {**body, "messages": messages} except Exception as e: print(f"Error: {e}") if r: try: print(r.json()) except: pass return body