FROM nvidia/cuda:12.0.0-cudnn8-runtime-ubuntu22.04 AS base # Use arguments to make CUDA version and GPU usage configurable ARG USE_CUDA=true ARG USE_CUDA_VER=cu120 ## Basis Environment ## ENV ENV=prod \ PORT=9099 \ USE_CUDA_DOCKER=${USE_CUDA} \ USE_CUDA_DOCKER_VER=${USE_CUDA_VER} # Install system dependencies including Python 3.11 RUN apt-get update && \ apt-get install -y \ python3.11 python3.11-venv python3-pip gcc build-essential curl git pkg-config libicu-dev && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* # Set Python 3.11 as default and install pip for Python 3.11 RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1 && \ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \ python3.11 get-pip.py && \ update-alternatives --install /usr/bin/pip3 pip3 /usr/local/bin/pip3.11 1 && \ rm get-pip.py # Work directory WORKDIR /app # Copy and install bm25s module COPY ./bm25s ./bm25s RUN pip install ./bm25s # Copy the requirements file COPY ./requirements.txt . # Install Python dependencies, using CUDA or CPU torch based on build arguments RUN pip install uv && \ if [ "$USE_CUDA" = "true" ]; then \ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/${USE_CUDA_DOCKER_VER} --no-cache-dir; \ else \ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir; \ fi # Install other Python dependencies RUN pip install -r requirements.txt --no-cache-dir # Copy the application code COPY . . # Expose the port ENV HOST="0.0.0.0" ENV PORT="9099" # Set entrypoint ENTRYPOINT [ "bash", "start.sh" ]