File size: 7,333 Bytes
f831146 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from predictions import get_embeddings, get_cosine_distance
from utils.pt_util import restore_objects, save_model, save_objects, restore_model
from utils.preprocessing import extract_fbanks
from models.cross_entropy_model import FBankCrossEntropyNetV2
from trainer.cross_entropy_train import test, train
import numpy as np
import torch
from data_proc.cross_entropy_dataset import FBanksCrossEntropyDataset, DataLoader
import json
from torch import optim
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
async def train_auth(
train_dataset_path: str = 'dataset-speaker-csf/fbanks-train',
test_dataset_path: str = 'dataset-speaker-csf/fbanks-test',
model_name: str = 'fbanks-net-auth',
model_layers : int = 4,
epochs: int = 2,
lr: float = 0.0005,
batch_size: int = 16,
labId: str = '',
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import multiprocessing
kwargs = {'num_workers': multiprocessing.cpu_count(),
'pin_memory': True} if torch.cuda.is_available() else {}
try:
train_dataset = FBanksCrossEntropyDataset(train_dataset_path)
train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, **kwargs)
test_dataset = FBanksCrossEntropyDataset(test_dataset_path)
test_loader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=True, **kwargs)
except:
return 'path dataset test or train is not exist'
if model_name == 'fbanks-net-auth':
model = FBankCrossEntropyNetV2(num_layers= model_layers, reduction='mean').to(device)
else:
model = None
return {"model not exist in lab"}
model_path = f'./modelDir/{labId}/log_train/{model_name}/{model_layers}/'
model = restore_model(model, model_path)
last_epoch, max_accuracy, train_losses, test_losses, train_accuracies, test_accuracies = restore_objects(
model_path, (0, 0, [], [], [], []))
start = last_epoch + 1 if max_accuracy > 0 else 0
models_path = []
optimizer = optim.Adam(model.parameters(), lr=lr)
for epoch in range(start, epochs):
train_loss, train_accuracy = train(
model, device, train_loader, optimizer, epoch, 500)
test_loss, test_accuracy = test(model, device, test_loader)
print('After epoch: {}, train_loss: {}, test loss is: {}, train_accuracy: {}, '
'test_accuracy: {}'.format(epoch, train_loss, test_loss, train_accuracy, test_accuracy))
train_losses.append(train_loss)
test_losses.append(test_loss)
train_accuracies.append(train_accuracy)
test_accuracies.append(test_accuracy)
if test_accuracy > max_accuracy:
max_accuracy = test_accuracy
model_path = save_model(model, epoch, model_path)
models_path.append(model_path)
save_objects((epoch, max_accuracy, train_losses, test_losses,
train_accuracies, test_accuracies), epoch, model_path)
print('saved epoch: {} as checkpoint'.format(epoch))
train_history = {
"train_accuracies": train_accuracies,
"test_accuracies": test_accuracies,
"train_losses": train_losses,
"test_losses": test_losses,
"model_path": models_path
}
return {
'history': json.dumps(train_history)
}
async def test_auth(
test_dataset_path: str = 'dataset-speaker-csf/fbanks-test',
model_name: str = 'fbanks-net-auth',
model_layers : int = 4,
batch_size: int = 2,
labId: str = '',
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import multiprocessing
kwargs = {'num_workers': multiprocessing.cpu_count(),
'pin_memory': True} if torch.cuda.is_available() else {}
try:
test_dataset = FBanksCrossEntropyDataset(test_dataset_path)
test_loader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=True, **kwargs)
except:
return 'path dataset test is not exist'
model_folder_path = f'./modelDir/{labId}/log_train/{model_name}/{model_layers}/'
for file in os.listdir(model_folder_path):
if file.endswith(".pth"):
model_path = os.path.join(model_folder_path, file)
if model_name == 'fbanks-net-auth':
try:
model = FBankCrossEntropyNetV2(num_layers=model_layers, reduction= "mean")
cpkt = torch.load(model_path)
model.load_state_dict(cpkt)
model.to(device)
except:
print('cuda load is error')
device = torch.device("cpu")
model = FBankCrossEntropyNetV2(num_layers=model_layers,reduction= "mean")
cpkt = torch.load(model_path)
model.load_state_dict(cpkt)
model.to(device)
else:
model = None
return {"model not exist in lab"}
test_loss, accurancy_mean = test(model, device, test_loader)
return {
'test_loss': test_loss,
'test_accuracy': accurancy_mean
}
async def infer_auth(
speech_file_path: str = 'sample.wav',
model_name: str = 'fbanks-net-auth',
model_layers : int = 4,
name_speaker: str = 'Hưng Phạm',
threshold: float = 0.1,
labId: str = '',
):
speaker_path = f'./modelDir/{labId}/speaker/'
dir_ = speaker_path + name_speaker
if not os.path.exists(dir_):
return {'message': 'name speaker is not exist,please add speaker'}
model_folder_path = f'./modelDir/{labId}/log_train/{model_name}/{model_layers}/'
for file in os.listdir(model_folder_path):
if file.endswith(".pth"):
model_path = os.path.join(model_folder_path, file)
if model_name == 'fbanks-net-auth':
try:
model = FBankCrossEntropyNetV2(num_layers=model_layers, reduction= "mean")
cpkt = torch.load(model_path)
model.load_state_dict(cpkt)
model.to(device)
except:
print('cuda load is error')
device = torch.device("cpu")
model = FBankCrossEntropyNetV2(num_layers=model_layers,reduction= "mean")
cpkt = torch.load(model_path)
model.load_state_dict(cpkt)
model.to(device)
else:
model = None
return {"model not exist in lab"}
fbanks = extract_fbanks(speech_file_path)
embeddings = get_embeddings(fbanks, model)
stored_embeddings = np.load(
speaker_path + name_speaker + '/embeddings.npy')
stored_embeddings = stored_embeddings.reshape((1, -1))
distances = get_cosine_distance(embeddings, stored_embeddings)
print('mean distances', np.mean(distances), flush=True)
positives = distances < threshold
positives_mean = np.mean(positives)
if positives_mean >= threshold:
return {
"positives_mean": positives_mean,
"name_speaker": name_speaker,
"auth": True,
}
else:
return {
"positives_mean": positives_mean,
"name_speaker": name_speaker,
"auth": False,
}
if __name__ == '__main__':
result = train_auth()
print(result) |