File size: 6,224 Bytes
f831146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from trainer.fbankcross_classification import train_classification, test_classification, inference_speaker_classification
from utils.pt_util import restore_objects, save_model, save_objects, restore_model
import torch
from data_proc.cross_entropy_dataset import FBanksCrossEntropyDataset, DataLoader
import json
from torch import optim
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
from models.classifier import DynamicLinearClassifier 


async def train_csf(
    train_dataset_path: str = 'dataset-speaker-csf/fbanks-train',
    test_dataset_path: str = 'dataset-speaker-csf/fbanks-test',
    model_name: str = 'fbanks-net-classification',
    num_layers : int = 2 ,
    epoch: int = 2,
    lr: float = 0.0005,
    batch_size: int = 2,
    labId: str = '',
):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    import multiprocessing
    kwargs = {'num_workers': multiprocessing.cpu_count(),
              'pin_memory': True} if torch.cuda.is_available() else {}
    try:
        train_dataset = FBanksCrossEntropyDataset(train_dataset_path)
        train_loader = DataLoader(
            train_dataset, batch_size=batch_size, shuffle=True, **kwargs)
        test_dataset = FBanksCrossEntropyDataset(test_dataset_path)
        test_loader = DataLoader(
            test_dataset, batch_size=batch_size, shuffle=True, **kwargs)
    except:
        return 'path dataset test or train is not exist'

    try:

        assert train_dataset.num_classes == test_dataset.num_classes

    except:
        return "The number of speakers in test and training sets must be equal "
    if model_name == 'fbanks-net-classification':
        try:
            model = DynamicLinearClassifier(num_layers= num_layers,
                output_size=train_dataset.num_classes).to(device)
        except:
            print('cuda load is error')
            device = torch.device("cpu")
            model = DynamicLinearClassifier(num_layers = num_layers,
                output_size=train_dataset.num_classes).to(device)
    else:
        model = None
        return {"model not exist in lab"}
    model_path = f'./modelDir/{labId}/log_train/{model_name}/{num_layers}'
    model = restore_model(model, model_path)
    last_epoch, max_accuracy, train_losses, test_losses, train_accuracies, test_accuracies = restore_objects(
        model_path, (0, 0, [], [], [], []))
    start = last_epoch + 1 if max_accuracy > 0 else 0

    models_path = []
    optimizer = optim.Adam(model.parameters(), lr)
    for epoch in range(start, epoch):
        train_loss, train_accuracy = train_classification(
            model, device, train_loader, optimizer, epoch, 500)
        test_loss, test_accuracy = test_classification(
            model, device, test_loader)
        print('After epoch: {}, train_loss: {}, test loss is: {}, train_accuracy: {}, '
              'test_accuracy: {}'.format(epoch, train_loss, test_loss, train_accuracy, test_accuracy))

        train_losses.append(train_loss)
        test_losses.append(test_loss)
        train_accuracies.append(train_accuracy)
        test_accuracies.append(test_accuracy)
        if test_accuracy > max_accuracy:
            max_accuracy = test_accuracy
            model_path = save_model(model, epoch, model_path)
            models_path.append(model_path)
            save_objects((epoch, max_accuracy, train_losses, test_losses,
                         train_accuracies, test_accuracies), epoch, model_path)
            print('saved epoch: {} as checkpoint'.format(epoch))
    train_history = {
        "train_accuracies": train_accuracies,
        "test_accuracies": test_accuracies,
        "train_losses": train_losses,
        "test_losses": test_losses,
        "model_path": models_path
    }
    return {
        'history': json.dumps(train_history)
    }


async def test_csf(
    test_dataset_path: str = 'dataset-speaker-csf/fbanks-test',
    model_name: str = 'fbanks-net-classification',
    num_layers : int = 2,
    batch_size: int = 2,
    labId: str = '',
):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    import multiprocessing
    kwargs = {'num_workers': multiprocessing.cpu_count(),
              'pin_memory': True} if torch.cuda.is_available() else {}
    try:
        test_dataset = FBanksCrossEntropyDataset(test_dataset_path)
        test_loader = DataLoader(
            test_dataset, batch_size=batch_size, shuffle=True, **kwargs)
    except:
        return 'path dataset test is not exist'
    model_folder_path = f'./modelDir/{labId}/log_train/{model_name}/{num_layers}/'
    for file in os.listdir(model_folder_path):
        if file.endswith(".pth"):
            model_path = os.path.join(model_folder_path, file)
    if model_name == 'fbanks-net-classification':
        try:
            model = DynamicLinearClassifier(num_layers=num_layers, output_size=test_dataset.num_classes)
            cpkt = torch.load(model_path)
            model.load_state_dict(cpkt)
            model.to(device)
        except:
            print('cuda load is error')
            device = torch.device("cpu")
            model = DynamicLinearClassifier(num_layers=num_layers,output_size=test_dataset.num_classes)
            cpkt = torch.load(model_path)
            model.load_state_dict(cpkt)
            model.to(device)
    else:
        model = None
        return {"model not exist in lab"}
    test_loss, accurancy_mean = test_classification(model, device, test_loader)
    print(accurancy_mean)
    return {
        'test_loss': test_loss,
        'test_accuracy': accurancy_mean
    }


def infer_csf(
    speech_file_path: str = './sample.wav',
    model_name: str = 'fbanks-net-classification',
    num_layers : int = 2,
    
    labId: str = '',
):
    model_folder_path = f'./modelDir/{labId}/log_train/{model_name}/'
    for file in os.listdir(model_folder_path):
        if file.endswith(".pth"):
            model_path = os.path.join(model_folder_path, file)
    rs = inference_speaker_classification(
        file_speaker=speech_file_path, model_path=model_path, num_layers = num_layers)
    return {
        "result": rs
    }
    
if __name__ == '__main__':
    result = infer_csf()
    print(result)