File size: 7,318 Bytes
f831146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from trainer.cross_entropy_train import test, train
from data_proc.cross_entropy_dataset import FBanksCrossEntropyDataset, DataLoader
from utils.pt_util import restore_objects, save_model, save_objects, restore_model
from speaker import load_data_speaker
from utils.preprocessing import extract_fbanks
from models.cross_entropy_model import FBankCrossEntropyNetV2
from predictions import get_embeddings
import faiss
import numpy as np
import json
import torch
from torch import optim
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'


async def train_id(
    train_dataset_path: str = 'dataset-speaker-csf/fbanks-train',
    test_dataset_path: str = 'dataset-speaker-csf/fbanks-test',
    model_name: str = 'fbanks-net-identity',
    model_layers : int = 4,
    epoch: int = 2,
    lr: float = 0.0005,
    batch_size: int = 2,
    labId: str = '',
):

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    import multiprocessing
    kwargs = {'num_workers': multiprocessing.cpu_count(),
              'pin_memory': True} if torch.cuda.is_available() else {}
    try:
        train_dataset = FBanksCrossEntropyDataset(train_dataset_path)
        train_loader = DataLoader(
            train_dataset, batch_size=batch_size, shuffle=True, **kwargs)
        test_dataset = FBanksCrossEntropyDataset(test_dataset_path)
        test_loader = DataLoader(
            test_dataset, batch_size=batch_size, shuffle=True, **kwargs)
    except:
        return 'path dataset test or train is not exist'
    if model_name == 'fbanks-net-identity':
        model = FBankCrossEntropyNetV2(num_layers= model_layers,reduction='mean').to(device)
    else:
        model = None
        return {"model not exist in lab"}

    model_path = f'./modelDir/{labId}/log_train/{model_name}/{model_layers}/'
    model = restore_model(model, model_path)
    last_epoch, max_accuracy, train_losses, test_losses, train_accuracies, test_accuracies = restore_objects(
        model_path, (0, 0, [], [], [], []))
    start = last_epoch + 1 if max_accuracy > 0 else 0

    models_path = []
    optimizer = optim.Adam(model.parameters(), lr=lr)
    for epoch in range(start, epoch):
        train_loss, train_accuracy = train(
            model, device, train_loader, optimizer, epoch, 500)
        test_loss, test_accuracy = test(model, device, test_loader)
        print('After epoch: {}, train_loss: {}, test loss is: {}, train_accuracy: {}, '
              'test_accuracy: {}'.format(epoch, train_loss, test_loss, train_accuracy, test_accuracy))

        train_losses.append(train_loss)
        test_losses.append(test_loss)
        train_accuracies.append(train_accuracy)
        test_accuracies.append(test_accuracy)
        if test_accuracy > max_accuracy:
            max_accuracy = test_accuracy
            model_path = save_model(model, epoch, model_path)
            models_path.append(model_path)
            save_objects((epoch, max_accuracy, train_losses, test_losses,
                         train_accuracies, test_accuracies), epoch, model_path)
            print('saved epoch: {} as checkpoint'.format(epoch))
    train_history = {
        "train_accuracies": train_accuracies,
        "test_accuracies": test_accuracies,
        "train_losses": train_losses,
        "test_losses": test_losses,
        "model_path": models_path
    }
    return {
        'history': json.dumps(train_history)
    }


async def test_id(
    test_dataset_path: str = 'dataset-speaker-csf/fbanks-test' ,
    model_name: str = 'fbanks-net-identity',
    model_layers : int =4,
    batch_size: int = 2,
    labId: str = '',
):

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    import multiprocessing
    kwargs = {'num_workers': multiprocessing.cpu_count(),
              'pin_memory': True} if torch.cuda.is_available() else {}
    try:
        test_dataset = FBanksCrossEntropyDataset(test_dataset_path)
        test_loader = DataLoader(
            test_dataset, batch_size=batch_size, shuffle=True, **kwargs)
    except:
        return 'path dataset test is not exist'
    model_folder_path = f'./modelDir/{labId}/log_train/{model_name}/{model_layers}/'
    for file in os.listdir(model_folder_path):
        if file.endswith(".pth"):           
            model_path = os.path.join(model_folder_path, file)
    if model_name == 'fbanks-net-identity':
        try:
                model = FBankCrossEntropyNetV2(num_layers=model_layers, reduction= "mean")
                cpkt = torch.load(model_path)
                model.load_state_dict(cpkt)
                model.to(device)
        except:
                print('cuda load is error')
                device = torch.device("cpu")
                model = FBankCrossEntropyNetV2(num_layers=model_layers,reduction= "mean")
                cpkt = torch.load(model_path)
                model.load_state_dict(cpkt)
                model.to(device)
    else:
        model = None
        return {"model not exist in lab"}
    test_loss, accurancy_mean = test(model, device, test_loader)
    print(accurancy_mean)
    return {
        'test_loss': test_loss,
        'test_accuracy': accurancy_mean
    }


async def infer_id(
    speech_file_path: str = './quangnam.wav',
    model_name :str = "fbanks-net-identity",
    model_layers : int = 4,
    num_speaker: int = 5,
    labId: str = '',
):  
    model_folder_path = f'./modelDir/{labId}/log_train/{model_name}/{model_layers}'
    for file in os.listdir(model_folder_path):
        if file.endswith(".pth"):
            model_path = os.path.join(model_folder_path, file)
    if model_name == 'fbanks-net-identity':
        try:
                model = FBankCrossEntropyNetV2(num_layers=model_layers, reduction= "mean")
                cpkt = torch.load(model_path)
                model.load_state_dict(cpkt)
                model.to(device)
        except:
                print('cuda load is error')
                device = torch.device("cpu")
                model = FBankCrossEntropyNetV2(num_layers=model_layers,reduction= "mean")
                cpkt = torch.load(model_path)
                model.load_state_dict(cpkt)
                model.to(device)
    else:
        model = None
        return {"model not exist in lab"}
    
    fbanks = extract_fbanks(speech_file_path)
    embeddings = get_embeddings(fbanks, model)
    mean_embeddings = np.mean(embeddings, axis=0)
    mean_embeddings = mean_embeddings.reshape((1, -1))
    rs = load_data_speaker(labId)
    encodes = []
    person_ids = []
    for key, vectors in rs.items():
        for emb, vector in vectors.items():
            encodes.append(np.array(vector, dtype=np.float32))
            person_ids.append(key)
    encodes = np.vstack(encodes).astype(np.float32)
    index = faiss.IndexFlatL2(encodes.shape[1])
    index.add(encodes)
    distances, indices = index.search(mean_embeddings, num_speaker)

    rs_speaker = []
    for i in range(num_speaker):
        # rs_speaker.append(f"speaker {i+1}: {person_ids[indices[0][i]]}, distances: {distances[0][i]}")
        rs_speaker.append({
            "speaker_name": person_ids[indices[0][i]],
            "distance": str(distances[0][i])
        })
    return {
        'result': rs_speaker
    }

if __name__ == '__main__':
    result = infer_id()
    print(result)