File size: 8,060 Bytes
f831146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time

import numpy as np
import torch
import tqdm
from torch import optim
import torch.nn.functional as F
from torch.utils.data import DataLoader

from utils.pt_util import restore_model, restore_objects, save_model, save_objects
from data_proc.triplet_loss_dataset import FBanksTripletDataset
from models.triplet_loss_model import FBankTripletLossNet


def _get_cosine_distance(a, b):
    return 1 - F.cosine_similarity(a, b)


def train(model, device, train_loader, optimizer, epoch, log_interval):
    model.train()
    losses = []
    positive_accuracy = 0
    negative_accuracy = 0

    postitive_distances = []
    negative_distances = []

    for batch_idx, ((ax, ay), (px, py), (nx, ny)) in enumerate(tqdm.tqdm(train_loader)):
        ax, px, nx = ax.to(device), px.to(device), nx.to(device)
        optimizer.zero_grad()
        a_out, p_out, n_out = model(ax, px, nx)
        loss = model.loss(a_out, p_out, n_out)
        losses.append(loss.item())

        with torch.no_grad():
            p_distance = _get_cosine_distance(a_out, p_out)
            postitive_distances.append(torch.mean(p_distance).item())

            n_distance = _get_cosine_distance(a_out, n_out)
            negative_distances.append(torch.mean(n_distance).item())

            positive_distance_mean = np.mean(postitive_distances)
            negative_distance_mean = np.mean(negative_distances)

            positive_std = np.std(postitive_distances)
            threshold = positive_distance_mean + 3 * positive_std

            positive_results = p_distance < threshold
            positive_accuracy += torch.sum(positive_results).item()

            negative_results = n_distance >= threshold
            negative_accuracy += torch.sum(negative_results).item()

        loss.backward()
        optimizer.step()

        if batch_idx % log_interval == 0:
            print('{} Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                time.ctime(time.time()),
                epoch, batch_idx * len(ax), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))

            positive_distance_mean = np.mean(postitive_distances)
            negative_distance_mean = np.mean(negative_distances)
            print('Train Set: positive_distance_mean: {}, negative_distance_mean: {}, std: {}, threshold: {}'.format(
                positive_distance_mean, negative_distance_mean, positive_std, threshold))

    positive_accuracy_mean = 100. * positive_accuracy / len(train_loader.dataset)
    negative_accuracy_mean = 100. * negative_accuracy / len(train_loader.dataset)
    return np.mean(losses), positive_accuracy_mean, negative_accuracy_mean


def test(model, device, test_loader, log_interval=None):
    model.eval()
    losses = []
    positive_accuracy = 0
    negative_accuracy = 0

    postitive_distances = []
    negative_distances = []

    with torch.no_grad():
        for batch_idx, ((ax, ay), (px, py), (nx, ny)) in enumerate(tqdm.tqdm(test_loader)):
            ax, px, nx = ax.to(device), px.to(device), nx.to(device)
            a_out, p_out, n_out = model(ax, px, nx)
            test_loss_on = model.loss(a_out, p_out, n_out, reduction='mean').item()
            losses.append(test_loss_on)

            p_distance = _get_cosine_distance(a_out, p_out)
            postitive_distances.append(torch.mean(p_distance).item())

            n_distance = _get_cosine_distance(a_out, n_out)
            negative_distances.append(torch.mean(n_distance).item())

            positive_distance_mean = np.mean(postitive_distances)
            negative_distance_mean = np.mean(negative_distances)

            positive_std = np.std(postitive_distances)
            threshold = positive_distance_mean + 3 * positive_std

            # experiment with this threshold distance to play with accuracy numbers
            positive_results = p_distance < threshold
            positive_accuracy += torch.sum(positive_results).item()

            negative_results = n_distance >= threshold
            negative_accuracy += torch.sum(negative_results).item()

            if log_interval is not None and batch_idx % log_interval == 0:
                print('{} Test: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    time.ctime(time.time()),
                    batch_idx * len(ax), len(test_loader.dataset),
                    100. * batch_idx / len(test_loader), test_loss_on))

    test_loss = np.mean(losses)
    positive_accuracy_mean = 100. * positive_accuracy / len(test_loader.dataset)
    negative_accuracy_mean = 100. * negative_accuracy / len(test_loader.dataset)

    positive_distance_mean = np.mean(postitive_distances)
    negative_distance_mean = np.mean(negative_distances)
    print('Test Set: positive_distance_mean: {}, negative_distance_mean: {}, std: {}, threshold: {}'.format(
        positive_distance_mean, negative_distance_mean, positive_std, threshold))

    print(
        '\nTest set: Average loss: {:.4f}, Positive Accuracy: {}/{} ({:.0f}%),  Negative Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, positive_accuracy, len(test_loader.dataset), positive_accuracy_mean, negative_accuracy,
            len(test_loader.dataset), negative_accuracy_mean))
    return test_loss, positive_accuracy_mean, negative_accuracy_mean


def main():
    model_path = 'siamese_fbanks_saved/'
    use_cuda = True
    device = torch.device("cuda" if use_cuda else "cpu")
    print('using device', device)

    import multiprocessing
    print('num cpus:', multiprocessing.cpu_count())

    kwargs = {'num_workers': multiprocessing.cpu_count(),
              'pin_memory': True} if use_cuda else {}

    train_dataset = FBanksTripletDataset('fbanks_train')
    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, **kwargs)

    test_dataset = FBanksTripletDataset('fbanks_test')
    test_loader = DataLoader(test_dataset, batch_size=32, shuffle=True, **kwargs)

    model = FBankTripletLossNet(margin=0.2).to(device)
    model = restore_model(model, model_path)
    last_epoch, max_accuracy, train_losses, test_losses, train_positive_accuracies, train_negative_accuracies, \
    test_positive_accuracies, test_negative_accuracies = restore_objects(model_path, (0, 0, [], [], [], [], [], []))

    start = last_epoch + 1 if max_accuracy > 0 else 0

    optimizer = optim.Adam(model.parameters(), lr=0.0005)

    for epoch in range(start, start + 20):
        train_loss, train_positive_accuracy, train_negative_accuracy = train(model, device, train_loader, optimizer,
                                                                             epoch, 500)
        test_loss, test_positive_accuracy, test_negative_accuracy = test(model, device, test_loader)
        print('After epoch: {}, train loss is : {}, test loss is: {}, '
              'train positive accuracy: {}, train negative accuracy: {}'
              'tes positive accuracy: {}, and test negative accuracy: {} '
              .format(epoch, train_loss, test_loss, train_positive_accuracy, train_negative_accuracy,
                      test_positive_accuracy, test_negative_accuracy))

        train_losses.append(train_loss)
        test_losses.append(test_loss)
        train_positive_accuracies.append(train_positive_accuracy)
        test_positive_accuracies.append(test_positive_accuracy)

        train_negative_accuracies.append(train_negative_accuracy)
        test_negative_accuracies.append(test_negative_accuracy)

        test_accuracy = (test_positive_accuracy + test_negative_accuracy) / 2

        if test_accuracy > max_accuracy:
            max_accuracy = test_accuracy
            save_model(model, epoch, model_path)
            save_objects((epoch, max_accuracy, train_losses, test_losses, train_positive_accuracies,
                          train_negative_accuracies, test_positive_accuracies, test_negative_accuracies),
                         epoch, model_path)
            print('saved epoch: {} as checkpoint'.format(epoch))


if __name__ == '__main__':
    main()