|
import librosa |
|
import numpy as np |
|
import python_speech_features as psf |
|
|
|
|
|
def get_fbanks(audio_file): |
|
|
|
def normalize_frames(signal, epsilon=1e-12): |
|
return np.array([(v - np.mean(v)) / max(np.std(v), epsilon) for v in signal]) |
|
|
|
y, sr = librosa.load(audio_file, sr=16000) |
|
assert sr == 16000 |
|
|
|
trim_len = int(0.25 * sr) |
|
if y.shape[0] < 1 * sr: |
|
|
|
return None |
|
|
|
y = y[trim_len:-trim_len] |
|
|
|
|
|
filter_banks, energies = psf.fbank(y, samplerate=sr, nfilt=64, winlen=0.025, winstep=0.01) |
|
filter_banks = normalize_frames(signal=filter_banks) |
|
|
|
filter_banks = filter_banks.reshape((filter_banks.shape[0], 64, 1)) |
|
return filter_banks |
|
|
|
|
|
def extract_fbanks(path): |
|
fbanks = get_fbanks(path) |
|
num_frames = fbanks.shape[0] |
|
|
|
|
|
|
|
numpy_arrays = [] |
|
start = 0 |
|
while start < num_frames + 64: |
|
slice_ = fbanks[start:start + 64] |
|
if slice_ is not None and slice_.shape[0] == 64: |
|
assert slice_.shape[0] == 64 |
|
assert slice_.shape[1] == 64 |
|
assert slice_.shape[2] == 1 |
|
|
|
slice_ = np.moveaxis(slice_, 2, 0) |
|
slice_ = slice_.reshape((1, 1, 64, 64)) |
|
numpy_arrays.append(slice_) |
|
start = start + 64 |
|
|
|
print('num samples extracted: {}'.format(len(numpy_arrays))) |
|
return np.concatenate(numpy_arrays, axis=0) |