File size: 1,851 Bytes
4abc1d2 362c82f ca5ddaf 4abc1d2 1f85172 c1ba798 1f85172 ca5ddaf 4abc1d2 265a0bb 0b0b49e 09b16b8 4abc1d2 09b16b8 362c82f 4abc1d2 908a208 362c82f 4abc1d2 e040936 09b16b8 4abc1d2 362c82f 09b16b8 362c82f 4abc1d2 362c82f 1f85172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-asr-th-2
results: []
datasets:
- common_voice
- mozilla-foundation/common_voice_10_0
language:
- th
pipeline_tag: automatic-speech-recognition
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-asr-th-2
This model was find-tune from on the CommonVoice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2310
- Wer: 0.3196
- Cer: 0.0878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.065 | 0.18 | 1000 | 0.5433 | 0.3259 | 0.0891 |
| 0.0792 | 0.36 | 2000 | 0.5453 | 0.3269 | 0.0901 |
| 0.1663 | 0.53 | 3000 | 0.4702 | 0.3299 | 0.0908 |
| 0.7971 | 0.71 | 4000 | 0.2513 | 0.3244 | 0.0889 |
| 0.7588 | 0.89 | 5000 | 0.2310 | 0.3196 | 0.0878 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3 |