File size: 2,084 Bytes
5d9584e 4de9937 5d9584e 4de9937 5d9584e 2163556 5d9584e 09a26e8 5d9584e 4de9937 5d9584e 99b0d21 5d9584e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-asr-th
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-asr-th
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3264
- Wer: 1.0
- Cer: 0.9960
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 9.7192 | 1.09 | 200 | 10.1504 | 1.0 | 1.0000 |
| 3.6967 | 2.19 | 400 | 3.9101 | 1.0 | 1.0000 |
| 3.5978 | 3.28 | 600 | 3.8292 | 1.0 | 1.0000 |
| 3.5324 | 4.37 | 800 | 3.6538 | 1.0 | 1.0000 |
| 3.529 | 5.46 | 1000 | 3.5816 | 1.0 | 1.0000 |
| 3.5145 | 6.56 | 1200 | 3.5487 | 1.0 | 1.0000 |
| 3.4544 | 7.65 | 1400 | 3.4912 | 1.0 | 0.9999 |
| 3.3666 | 8.74 | 1600 | 3.3998 | 1.0 | 0.9974 |
| 3.2963 | 9.84 | 1800 | 3.3264 | 1.0 | 0.9960 |
| 3.2361 | 10.93 | 2000 | 3.2402 | 1.0001 | 0.9950 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|