File size: 1,942 Bytes
5d9584e
 
 
 
1968b83
 
5d9584e
 
 
 
 
 
 
 
 
 
1968b83
 
 
 
 
5d9584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c59af
5d9584e
1d00c31
5d9584e
a1999a8
 
5d9584e
 
b7895ae
d8cc25f
5d9584e
 
1968b83
 
 
 
 
 
 
 
 
 
 
 
 
5d9584e
 
99b0d21
5d9584e
 
d8cc25f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-asr-th
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-asr-th

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5207
- Wer: 0.4689
- Cer: 0.1571

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 3500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.6231        | 0.57  | 500  | 3.5254          | 1.0    | 0.9999 |
| 1.5065        | 1.14  | 1000 | 1.0542          | 0.7677 | 0.2939 |
| 1.0592        | 1.71  | 1500 | 0.7072          | 0.5837 | 0.2054 |
| 1.0818        | 2.28  | 2000 | 0.6309          | 0.5414 | 0.1887 |
| 1.0136        | 2.85  | 2500 | 0.5573          | 0.4966 | 0.1690 |
| 0.7907        | 3.42  | 3000 | 0.5207          | 0.4689 | 0.1571 |
| 0.8223        | 4.0   | 3500 | 0.5079          | 0.4642 | 0.1546 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2