File size: 1,942 Bytes
5d9584e 1968b83 5d9584e 1968b83 5d9584e e1c59af 5d9584e 1d00c31 5d9584e a1999a8 5d9584e b7895ae d8cc25f 5d9584e 1968b83 5d9584e 99b0d21 5d9584e d8cc25f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-asr-th
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-asr-th
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5207
- Wer: 0.4689
- Cer: 0.1571
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 3500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.6231 | 0.57 | 500 | 3.5254 | 1.0 | 0.9999 |
| 1.5065 | 1.14 | 1000 | 1.0542 | 0.7677 | 0.2939 |
| 1.0592 | 1.71 | 1500 | 0.7072 | 0.5837 | 0.2054 |
| 1.0818 | 2.28 | 2000 | 0.6309 | 0.5414 | 0.1887 |
| 1.0136 | 2.85 | 2500 | 0.5573 | 0.4966 | 0.1690 |
| 0.7907 | 3.42 | 3000 | 0.5207 | 0.4689 | 0.1571 |
| 0.8223 | 4.0 | 3500 | 0.5079 | 0.4642 | 0.1546 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|