MorenoLaQuatra commited on
Commit
37316da
·
1 Parent(s): 3979eaa

Adding model and first version of the README

Browse files
Files changed (6) hide show
  1. README.md +43 -0
  2. config.json +36 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer_config.json +1 -0
  5. training_args.bin +3 -0
  6. vocab.txt +0 -0
README.md CHANGED
@@ -1,3 +1,46 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
4
+
5
+ # Inclusively Classification Model
6
+
7
+ This model is an Italian classification model fine-tuned from the [Italian BERT model](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) for the classification of inclusive language in Italian.
8
+
9
+ It has been trained to detect three classes:
10
+ - `inclusive`: the sentence is inclusive (e.g. "Il personale docente e non docente")
11
+ - `not_inclusive`: the sentence is not inclusive (e.g. "I professori")
12
+ - `not_pertinent`: the sentence is not pertinent to the task (e.g. "La scuola è chiusa")
13
+
14
+ ## Training data
15
+
16
+ The model has been trained on a dataset containing:
17
+ - 8580 training sentences
18
+ - 1073 validation sentences
19
+ - 1072 test sentences
20
+
21
+ The data collection has been manually annotated by experts in the field of inclusive language (dataset is not publicly available yet).
22
+
23
+ ## Training procedure
24
+
25
+ The model has been fine-tuned from the [Italian BERT model](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) using the following hyperparameters:
26
+ - `max_length`: 128
27
+ - `batch_size`: 128
28
+ - `learning_rate`: 5e-5
29
+ - `warmup_steps`: 500
30
+ - `epochs`: 10 (best model is selected based on validation accuracy)
31
+ - `optimizer`: AdamW
32
+
33
+ ## Evaluation results
34
+
35
+ The model has been evaluated on the test set and obtained the following results:
36
+
37
+ | Model | Accuracy | Inclusive F1 | Not inclusive F1 | Not pertinent F1 |
38
+ |-------|----------|--------------|------------------|------------------|
39
+ | TF-IDF + MLP | 0.68 | 0.63 | 0.69 | 0.66 |
40
+ | TF-IDF + SVM | 0.61 | 0.53 | 0.60 | 0.78 |
41
+ | TF-IDF + GB | 0.74 | 0.74 | 0.76 | 0.72 |
42
+ | multilingual | 0.86 | 0.88 | 0.89 | 0.83 |
43
+ | **This** | 0.89 | 0.88 | 0.92 | 0.85 |
44
+
45
+ The model has been compared with a multilingual model trained on the same data and obtained better results.
46
+
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "dbmdz/bert-base-italian-xxl-cased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "inclusive",
13
+ "1": "not_inclusive",
14
+ "2": "not_pertinent"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "inclusive": 0,
20
+ "not_inclusive": 1,
21
+ "not_pertinent": 2
22
+ },
23
+ "layer_norm_eps": 1e-12,
24
+ "max_position_embeddings": 512,
25
+ "model_type": "bert",
26
+ "num_attention_heads": 12,
27
+ "num_hidden_layers": 12,
28
+ "pad_token_id": 0,
29
+ "position_embedding_type": "absolute",
30
+ "problem_type": "single_label_classification",
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.17.0",
33
+ "type_vocab_size": 2,
34
+ "use_cache": true,
35
+ "vocab_size": 32102
36
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f11f5dfedbc3c7bbb7ca7e3eea0fa23fa32cde1b349449bcbe683cf3dd606874
3
+ size 442876973
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "max_len": 512, "init_inputs": []}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc383b5651db0bb264bad9740e8b854a6208441cb65120005c8af42af3496518
3
+ size 2991
vocab.txt ADDED
The diff for this file is too large to render. See raw diff