EExe commited on
Commit
bbb2e1a
·
1 Parent(s): b8d48b2

Config inspired from user tayfen

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.48 +/- 0.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eaea935db7483212ee5d975c46a5d4e07939253bb3d6a9c4ffbe5574e5c6dfc
3
+ size 108138
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbcacdcd310>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fbcacdc9a00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
+ "optimizer_kwargs": {
19
+ "alpha": 0.99,
20
+ "eps": 1e-05,
21
+ "weight_decay": 0
22
+ }
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
26
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
27
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
28
+ "_shape": null,
29
+ "dtype": null,
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 3
38
+ ],
39
+ "low": "[-1. -1. -1.]",
40
+ "high": "[1. 1. 1.]",
41
+ "bounded_below": "[ True True True]",
42
+ "bounded_above": "[ True True True]",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 719620,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679906573063140543,
52
+ "learning_rate": 0.0007,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAh3OPvZy5Fr/r5ZG/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAvqiavYY9H79Bo52/lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAACHc4+9nLkWv+vlkb9p7Oo8YlqPuzFcIj2UaA5LAUsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[-0.07004457 -0.5887697 -1.139829 ]]",
62
+ "desired_goal": "[[-0.07551716 -0.6220325 -1.2315446 ]]",
63
+ "observation": "[[-0.07004457 -0.5887697 -1.139829 0.02867718 -0.00437479 0.0396387 ]]"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAA5jzLPRp5AL50kj8+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
72
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[ 0.09923725 -0.12546197 0.18708211]]",
74
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
+ },
76
+ "_episode_num": 0,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.28037999999999996,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz0wwnGtY9L+UhpRSlIwBbJRLMowBdJRHQK212SJ0nw51fZQoaAZoCWgPQwi3CffKvFXnv5SGlFKUaBVLMmgWR0CttlHlnyuqdX2UKGgGaAloD0MI1Jl7SPge8r+UhpRSlGgVSzJoFkdArbbFahYeT3V9lChoBmgJaA9DCC+/02TGW+2/lIaUUpRoFUsyaBZHQK23OWsRxtJ1fZQoaAZoCWgPQwhpOGVuvhHsv5SGlFKUaBVLMmgWR0Ctt7Jyhi9adX2UKGgGaAloD0MI93ghHR4C8b+UhpRSlGgVSzJoFkdArbgmNWEK3XV9lChoBmgJaA9DCCV1ApoIm+W/lIaUUpRoFUsyaBZHQK24mNGViWp1fZQoaAZoCWgPQwhhwf2AB4bzv5SGlFKUaBVLMmgWR0CtuQi5uqFRdX2UKGgGaAloD0MIx9Rd2QWD67+UhpRSlGgVSzJoFkdArbl/VI7NjnV9lChoBmgJaA9DCMr8o2/S9Pq/lIaUUpRoFUsyaBZHQK259oZAIIF1fZQoaAZoCWgPQwgWwJSBA9r5v5SGlFKUaBVLMmgWR0Ctun8YQ8OkdX2UKGgGaAloD0MIlnfVA+Zh8r+UhpRSlGgVSzJoFkdArbsxlYlpoXV9lChoBmgJaA9DCMQGCydpfvG/lIaUUpRoFUsyaBZHQK274cVgx8F1fZQoaAZoCWgPQwilngWhvA/yv5SGlFKUaBVLMmgWR0CtvI6rNnoQdX2UKGgGaAloD0MIAOKuXkXG8r+UhpRSlGgVSzJoFkdArb10TcqOLnV9lChoBmgJaA9DCLPTD+oihdm/lIaUUpRoFUsyaBZHQK2+KfZmI0t1fZQoaAZoCWgPQwgDeXb51kf4v5SGlFKUaBVLMmgWR0Ctvt/20zCUdX2UKGgGaAloD0MIzeSbbW5M5b+UhpRSlGgVSzJoFkdArb+lUbT+enV9lChoBmgJaA9DCCdO7ncoiuq/lIaUUpRoFUsyaBZHQK3AbvUjLSx1fZQoaAZoCWgPQwjb+uk/a37lv5SGlFKUaBVLMmgWR0CtwTXUYsNEdX2UKGgGaAloD0MIjSeCOA8n9r+UhpRSlGgVSzJoFkdArcH7SmZVn3V9lChoBmgJaA9DCMXGvI44JP6/lIaUUpRoFUsyaBZHQK3C6mICU5d1fZQoaAZoCWgPQwgb1H5rJ8rvv5SGlFKUaBVLMmgWR0Ctw6XNs3yadX2UKGgGaAloD0MIsMqFyr8W5L+UhpRSlGgVSzJoFkdArcRIXIlt0nV9lChoBmgJaA9DCESkpl1Ms+K/lIaUUpRoFUsyaBZHQK3EuwB5ooN1fZQoaAZoCWgPQwgBFCNL5tj2v5SGlFKUaBVLMmgWR0CtxSrg4wRHdX2UKGgGaAloD0MIxFp8CoAx9b+UhpRSlGgVSzJoFkdArcWgPPLPlnV9lChoBmgJaA9DCFGFP8ObdfS/lIaUUpRoFUsyaBZHQK3GHYUWVNZ1fZQoaAZoCWgPQwjkS6jg8EL5v5SGlFKUaBVLMmgWR0CtxqTefqX4dX2UKGgGaAloD0MICeHRxhHr5r+UhpRSlGgVSzJoFkdArccZlFtsN3V9lChoBmgJaA9DCBHiytk7Y/G/lIaUUpRoFUsyaBZHQK3HjaQFLWZ1fZQoaAZoCWgPQwie7GZGP3oDwJSGlFKUaBVLMmgWR0CtyAQ4jrzHdX2UKGgGaAloD0MIy9sRTgte47+UhpRSlGgVSzJoFkdArciCaG5+Y3V9lChoBmgJaA9DCAHfbd44afW/lIaUUpRoFUsyaBZHQK3JGu8K5TZ1fZQoaAZoCWgPQwgIym37HnXiv5SGlFKUaBVLMmgWR0CtyZMhgVoIdX2UKGgGaAloD0MIkiHH1jMkAcCUhpRSlGgVSzJoFkdArcoMnb7CSHV9lChoBmgJaA9DCKpm1lJAmv6/lIaUUpRoFUsyaBZHQK3Kr0yxiXp1fZQoaAZoCWgPQwh/bf30nzX1v5SGlFKUaBVLMmgWR0CtyyhLf1pTdX2UKGgGaAloD0MI3/lFCfqL77+UhpRSlGgVSzJoFkdArcuqt3fQ8nV9lChoBmgJaA9DCPUOt0PD4vm/lIaUUpRoFUsyaBZHQK3MNyaNMoN1fZQoaAZoCWgPQwgF/BpJgvD2v5SGlFKUaBVLMmgWR0CtzL1QAMlUdX2UKGgGaAloD0MI0Xr4MlGE37+UhpRSlGgVSzJoFkdArc0/3L3bmHV9lChoBmgJaA9DCGKjrN9MTNe/lIaUUpRoFUsyaBZHQK3Nv4HHFP11fZQoaAZoCWgPQwhTQrCqXj4BwJSGlFKUaBVLMmgWR0CtzjwID5j6dX2UKGgGaAloD0MIhShf0ELC+L+UhpRSlGgVSzJoFkdArc6umFaje3V9lChoBmgJaA9DCAJIbeLk/u+/lIaUUpRoFUsyaBZHQK3PKEIPbwl1fZQoaAZoCWgPQwjKjSJrDWX+v5SGlFKUaBVLMmgWR0Ctz5/RVp9JdX2UKGgGaAloD0MIYHXkSGdg/7+UhpRSlGgVSzJoFkdArdAZJyyUtHV9lChoBmgJaA9DCKTi/46oUOO/lIaUUpRoFUsyaBZHQK3QmstkFwF1fZQoaAZoCWgPQwj8VuvE5Xjiv5SGlFKUaBVLMmgWR0Ct0SVwYLssdX2UKGgGaAloD0MIqtctAmP99b+UhpRSlGgVSzJoFkdArdHBkRSP2nV9lChoBmgJaA9DCD9uv3yyYuS/lIaUUpRoFUsyaBZHQK3SQsz2vjh1fZQoaAZoCWgPQwiJmX0eozzhv5SGlFKUaBVLMmgWR0Ct0sWDYh+wdX2UKGgGaAloD0MIB/AWSFD87L+UhpRSlGgVSzJoFkdArdNGbqhUR3V9lChoBmgJaA9DCDScMjffCO2/lIaUUpRoFUsyaBZHQK3TvhnanJl1fZQoaAZoCWgPQwi9jc2OVB/1v5SGlFKUaBVLMmgWR0Ct1DMvh60IdX2UKGgGaAloD0MIM6SK4lXW6L+UhpRSlGgVSzJoFkdArdSyg2606nV9lChoBmgJaA9DCOEM/n4x2+q/lIaUUpRoFUsyaBZHQK3VOwHqu8t1fZQoaAZoCWgPQwiALa9cb5v+v5SGlFKUaBVLMmgWR0Ct1biSA6MjdX2UKGgGaAloD0MICACOPXsu+7+UhpRSlGgVSzJoFkdArdYvdj5KvnV9lChoBmgJaA9DCESkpl1M8/i/lIaUUpRoFUsyaBZHQK3Wrtk4FRp1fZQoaAZoCWgPQwiKPh9lxEX3v5SGlFKUaBVLMmgWR0Ct1x/W1+iKdX2UKGgGaAloD0MI4o+iztwD97+UhpRSlGgVSzJoFkdArdeQpnYg73V9lChoBmgJaA9DCAMGSZ9W0fy/lIaUUpRoFUsyaBZHQK3YBDvVmSR1fZQoaAZoCWgPQwi+TX/2I0X4v5SGlFKUaBVLMmgWR0Ct2KuzY287dX2UKGgGaAloD0MIE2BY/nyb9L+UhpRSlGgVSzJoFkdArdlfuy/sV3V9lChoBmgJaA9DCB+g+3JmO/C/lIaUUpRoFUsyaBZHQK3aBu+h4+t1fZQoaAZoCWgPQwjo+j4cJET4v5SGlFKUaBVLMmgWR0Ct2roouwotdX2UKGgGaAloD0MIhBCQL6EC7b+UhpRSlGgVSzJoFkdArdtwc1fmcXV9lChoBmgJaA9DCFkWTPxRVPu/lIaUUpRoFUsyaBZHQK3cK2Dxsl91fZQoaAZoCWgPQwjKiXYVUj72v5SGlFKUaBVLMmgWR0Ct3QIAOrhjdX2UKGgGaAloD0MIPzbJj/iV7b+UhpRSlGgVSzJoFkdArd3MHB1s+HV9lChoBmgJaA9DCGA/xAYLp/C/lIaUUpRoFUsyaBZHQK3eiRmseXB1fZQoaAZoCWgPQwjfF5eqtMX5v5SGlFKUaBVLMmgWR0Ct30ggX/HYdX2UKGgGaAloD0MINq5/12fO7b+UhpRSlGgVSzJoFkdAreAEK3NLUXV9lChoBmgJaA9DCD49tmXAGfG/lIaUUpRoFUsyaBZHQK3gwOJcgQp1fZQoaAZoCWgPQwgm++dpwKD4v5SGlFKUaBVLMmgWR0Ct4YJM6BAfdX2UKGgGaAloD0MIC0RPyqQG+b+UhpRSlGgVSzJoFkdAreIpf6XSjXV9lChoBmgJaA9DCMqjG2FRkeq/lIaUUpRoFUsyaBZHQK3ioi35N491fZQoaAZoCWgPQwixw5j09xIBwJSGlFKUaBVLMmgWR0Ct4xmFi8WcdX2UKGgGaAloD0MI+kLIef8f+7+UhpRSlGgVSzJoFkdAreOPGn4wiHV9lChoBmgJaA9DCDmbjgBuFvC/lIaUUpRoFUsyaBZHQK3kIhJyyUt1fZQoaAZoCWgPQwhlbr4R3TPpv5SGlFKUaBVLMmgWR0Ct5Jul41P4dX2UKGgGaAloD0MIwoh9AijG9L+UhpRSlGgVSzJoFkdAreUVtQ9A5nV9lChoBmgJaA9DCKSl8naEEwzAlIaUUpRoFUsyaBZHQK3li0Mw1zh1fZQoaAZoCWgPQwgl5llJK14AwJSGlFKUaBVLMmgWR0Ct5gRzRx95dX2UKGgGaAloD0MISkONQpJ5A8CUhpRSlGgVSzJoFkdAreZ6MHbAUXV9lChoBmgJaA9DCH9Ma9PYXvS/lIaUUpRoFUsyaBZHQK3m8nrIHTt1fZQoaAZoCWgPQwi3mnXG98X9v5SGlFKUaBVLMmgWR0Ct52l/QSi/dX2UKGgGaAloD0MIiuQrgZQY8r+UhpRSlGgVSzJoFkdArefhUvPC23V9lChoBmgJaA9DCDjZBu5AvQDAlIaUUpRoFUsyaBZHQK3oXmwJPZZ1fZQoaAZoCWgPQwgFwePbuwYJwJSGlFKUaBVLMmgWR0Ct6N5FXq7idX2UKGgGaAloD0MIYLAbti0K8b+UhpRSlGgVSzJoFkdArelU4m1IAnV9lChoBmgJaA9DCC2WIvlKoPm/lIaUUpRoFUsyaBZHQK3pyc5Ke051fZQoaAZoCWgPQwgOZaiKqXTyv5SGlFKUaBVLMmgWR0Ct6j/7aZhKdX2UKGgGaAloD0MIUG1wIvo187+UhpRSlGgVSzJoFkdAreq0IcBEKHV9lChoBmgJaA9DCJc5XRYTG+2/lIaUUpRoFUsyaBZHQK3rLjwQUYd1fZQoaAZoCWgPQwitad5xio7rv5SGlFKUaBVLMmgWR0Ct68SpaRp2dX2UKGgGaAloD0MIHVn5ZTDmCMCUhpRSlGgVSzJoFkdArew99BrvcHV9lChoBmgJaA9DCOYffZOmQfK/lIaUUpRoFUsyaBZHQK3stCwbEP11ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 143924,
89
+ "n_steps": 5,
90
+ "gamma": 0.99,
91
+ "gae_lambda": 1.0,
92
+ "ent_coef": 0.0,
93
+ "vf_coef": 0.5,
94
+ "max_grad_norm": 0.5,
95
+ "normalize_advantage": false
96
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b8e760c04465e0c251877b14015ac46fc5a64a36ec1838012949f8dc21105bc
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfe4b9b791a8c3902b7e2e2d6f7e1f609d9793646aa7342eed68544f76bb3fe6
3
+ size 46718
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbcacdcd310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbcacdc9a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 719620, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679906573063140543, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAh3OPvZy5Fr/r5ZG/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAvqiavYY9H79Bo52/lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAACHc4+9nLkWv+vlkb9p7Oo8YlqPuzFcIj2UaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.07004457 -0.5887697 -1.139829 ]]", "desired_goal": "[[-0.07551716 -0.6220325 -1.2315446 ]]", "observation": "[[-0.07004457 -0.5887697 -1.139829 0.02867718 -0.00437479 0.0396387 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAA5jzLPRp5AL50kj8+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09923725 -0.12546197 0.18708211]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.28037999999999996, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz0wwnGtY9L+UhpRSlIwBbJRLMowBdJRHQK212SJ0nw51fZQoaAZoCWgPQwi3CffKvFXnv5SGlFKUaBVLMmgWR0CttlHlnyuqdX2UKGgGaAloD0MI1Jl7SPge8r+UhpRSlGgVSzJoFkdArbbFahYeT3V9lChoBmgJaA9DCC+/02TGW+2/lIaUUpRoFUsyaBZHQK23OWsRxtJ1fZQoaAZoCWgPQwhpOGVuvhHsv5SGlFKUaBVLMmgWR0Ctt7Jyhi9adX2UKGgGaAloD0MI93ghHR4C8b+UhpRSlGgVSzJoFkdArbgmNWEK3XV9lChoBmgJaA9DCCV1ApoIm+W/lIaUUpRoFUsyaBZHQK24mNGViWp1fZQoaAZoCWgPQwhhwf2AB4bzv5SGlFKUaBVLMmgWR0CtuQi5uqFRdX2UKGgGaAloD0MIx9Rd2QWD67+UhpRSlGgVSzJoFkdArbl/VI7NjnV9lChoBmgJaA9DCMr8o2/S9Pq/lIaUUpRoFUsyaBZHQK259oZAIIF1fZQoaAZoCWgPQwgWwJSBA9r5v5SGlFKUaBVLMmgWR0Ctun8YQ8OkdX2UKGgGaAloD0MIlnfVA+Zh8r+UhpRSlGgVSzJoFkdArbsxlYlpoXV9lChoBmgJaA9DCMQGCydpfvG/lIaUUpRoFUsyaBZHQK274cVgx8F1fZQoaAZoCWgPQwilngWhvA/yv5SGlFKUaBVLMmgWR0CtvI6rNnoQdX2UKGgGaAloD0MIAOKuXkXG8r+UhpRSlGgVSzJoFkdArb10TcqOLnV9lChoBmgJaA9DCLPTD+oihdm/lIaUUpRoFUsyaBZHQK2+KfZmI0t1fZQoaAZoCWgPQwgDeXb51kf4v5SGlFKUaBVLMmgWR0Ctvt/20zCUdX2UKGgGaAloD0MIzeSbbW5M5b+UhpRSlGgVSzJoFkdArb+lUbT+enV9lChoBmgJaA9DCCdO7ncoiuq/lIaUUpRoFUsyaBZHQK3AbvUjLSx1fZQoaAZoCWgPQwjb+uk/a37lv5SGlFKUaBVLMmgWR0CtwTXUYsNEdX2UKGgGaAloD0MIjSeCOA8n9r+UhpRSlGgVSzJoFkdArcH7SmZVn3V9lChoBmgJaA9DCMXGvI44JP6/lIaUUpRoFUsyaBZHQK3C6mICU5d1fZQoaAZoCWgPQwgb1H5rJ8rvv5SGlFKUaBVLMmgWR0Ctw6XNs3yadX2UKGgGaAloD0MIsMqFyr8W5L+UhpRSlGgVSzJoFkdArcRIXIlt0nV9lChoBmgJaA9DCESkpl1Ms+K/lIaUUpRoFUsyaBZHQK3EuwB5ooN1fZQoaAZoCWgPQwgBFCNL5tj2v5SGlFKUaBVLMmgWR0CtxSrg4wRHdX2UKGgGaAloD0MIxFp8CoAx9b+UhpRSlGgVSzJoFkdArcWgPPLPlnV9lChoBmgJaA9DCFGFP8ObdfS/lIaUUpRoFUsyaBZHQK3GHYUWVNZ1fZQoaAZoCWgPQwjkS6jg8EL5v5SGlFKUaBVLMmgWR0CtxqTefqX4dX2UKGgGaAloD0MICeHRxhHr5r+UhpRSlGgVSzJoFkdArccZlFtsN3V9lChoBmgJaA9DCBHiytk7Y/G/lIaUUpRoFUsyaBZHQK3HjaQFLWZ1fZQoaAZoCWgPQwie7GZGP3oDwJSGlFKUaBVLMmgWR0CtyAQ4jrzHdX2UKGgGaAloD0MIy9sRTgte47+UhpRSlGgVSzJoFkdArciCaG5+Y3V9lChoBmgJaA9DCAHfbd44afW/lIaUUpRoFUsyaBZHQK3JGu8K5TZ1fZQoaAZoCWgPQwgIym37HnXiv5SGlFKUaBVLMmgWR0CtyZMhgVoIdX2UKGgGaAloD0MIkiHH1jMkAcCUhpRSlGgVSzJoFkdArcoMnb7CSHV9lChoBmgJaA9DCKpm1lJAmv6/lIaUUpRoFUsyaBZHQK3Kr0yxiXp1fZQoaAZoCWgPQwh/bf30nzX1v5SGlFKUaBVLMmgWR0CtyyhLf1pTdX2UKGgGaAloD0MI3/lFCfqL77+UhpRSlGgVSzJoFkdArcuqt3fQ8nV9lChoBmgJaA9DCPUOt0PD4vm/lIaUUpRoFUsyaBZHQK3MNyaNMoN1fZQoaAZoCWgPQwgF/BpJgvD2v5SGlFKUaBVLMmgWR0CtzL1QAMlUdX2UKGgGaAloD0MI0Xr4MlGE37+UhpRSlGgVSzJoFkdArc0/3L3bmHV9lChoBmgJaA9DCGKjrN9MTNe/lIaUUpRoFUsyaBZHQK3Nv4HHFP11fZQoaAZoCWgPQwhTQrCqXj4BwJSGlFKUaBVLMmgWR0CtzjwID5j6dX2UKGgGaAloD0MIhShf0ELC+L+UhpRSlGgVSzJoFkdArc6umFaje3V9lChoBmgJaA9DCAJIbeLk/u+/lIaUUpRoFUsyaBZHQK3PKEIPbwl1fZQoaAZoCWgPQwjKjSJrDWX+v5SGlFKUaBVLMmgWR0Ctz5/RVp9JdX2UKGgGaAloD0MIYHXkSGdg/7+UhpRSlGgVSzJoFkdArdAZJyyUtHV9lChoBmgJaA9DCKTi/46oUOO/lIaUUpRoFUsyaBZHQK3QmstkFwF1fZQoaAZoCWgPQwj8VuvE5Xjiv5SGlFKUaBVLMmgWR0Ct0SVwYLssdX2UKGgGaAloD0MIqtctAmP99b+UhpRSlGgVSzJoFkdArdHBkRSP2nV9lChoBmgJaA9DCD9uv3yyYuS/lIaUUpRoFUsyaBZHQK3SQsz2vjh1fZQoaAZoCWgPQwiJmX0eozzhv5SGlFKUaBVLMmgWR0Ct0sWDYh+wdX2UKGgGaAloD0MIB/AWSFD87L+UhpRSlGgVSzJoFkdArdNGbqhUR3V9lChoBmgJaA9DCDScMjffCO2/lIaUUpRoFUsyaBZHQK3TvhnanJl1fZQoaAZoCWgPQwi9jc2OVB/1v5SGlFKUaBVLMmgWR0Ct1DMvh60IdX2UKGgGaAloD0MIM6SK4lXW6L+UhpRSlGgVSzJoFkdArdSyg2606nV9lChoBmgJaA9DCOEM/n4x2+q/lIaUUpRoFUsyaBZHQK3VOwHqu8t1fZQoaAZoCWgPQwiALa9cb5v+v5SGlFKUaBVLMmgWR0Ct1biSA6MjdX2UKGgGaAloD0MICACOPXsu+7+UhpRSlGgVSzJoFkdArdYvdj5KvnV9lChoBmgJaA9DCESkpl1M8/i/lIaUUpRoFUsyaBZHQK3Wrtk4FRp1fZQoaAZoCWgPQwiKPh9lxEX3v5SGlFKUaBVLMmgWR0Ct1x/W1+iKdX2UKGgGaAloD0MI4o+iztwD97+UhpRSlGgVSzJoFkdArdeQpnYg73V9lChoBmgJaA9DCAMGSZ9W0fy/lIaUUpRoFUsyaBZHQK3YBDvVmSR1fZQoaAZoCWgPQwi+TX/2I0X4v5SGlFKUaBVLMmgWR0Ct2KuzY287dX2UKGgGaAloD0MIE2BY/nyb9L+UhpRSlGgVSzJoFkdArdlfuy/sV3V9lChoBmgJaA9DCB+g+3JmO/C/lIaUUpRoFUsyaBZHQK3aBu+h4+t1fZQoaAZoCWgPQwjo+j4cJET4v5SGlFKUaBVLMmgWR0Ct2roouwotdX2UKGgGaAloD0MIhBCQL6EC7b+UhpRSlGgVSzJoFkdArdtwc1fmcXV9lChoBmgJaA9DCFkWTPxRVPu/lIaUUpRoFUsyaBZHQK3cK2Dxsl91fZQoaAZoCWgPQwjKiXYVUj72v5SGlFKUaBVLMmgWR0Ct3QIAOrhjdX2UKGgGaAloD0MIPzbJj/iV7b+UhpRSlGgVSzJoFkdArd3MHB1s+HV9lChoBmgJaA9DCGA/xAYLp/C/lIaUUpRoFUsyaBZHQK3eiRmseXB1fZQoaAZoCWgPQwjfF5eqtMX5v5SGlFKUaBVLMmgWR0Ct30ggX/HYdX2UKGgGaAloD0MINq5/12fO7b+UhpRSlGgVSzJoFkdAreAEK3NLUXV9lChoBmgJaA9DCD49tmXAGfG/lIaUUpRoFUsyaBZHQK3gwOJcgQp1fZQoaAZoCWgPQwgm++dpwKD4v5SGlFKUaBVLMmgWR0Ct4YJM6BAfdX2UKGgGaAloD0MIC0RPyqQG+b+UhpRSlGgVSzJoFkdAreIpf6XSjXV9lChoBmgJaA9DCMqjG2FRkeq/lIaUUpRoFUsyaBZHQK3ioi35N491fZQoaAZoCWgPQwixw5j09xIBwJSGlFKUaBVLMmgWR0Ct4xmFi8WcdX2UKGgGaAloD0MI+kLIef8f+7+UhpRSlGgVSzJoFkdAreOPGn4wiHV9lChoBmgJaA9DCDmbjgBuFvC/lIaUUpRoFUsyaBZHQK3kIhJyyUt1fZQoaAZoCWgPQwhlbr4R3TPpv5SGlFKUaBVLMmgWR0Ct5Jul41P4dX2UKGgGaAloD0MIwoh9AijG9L+UhpRSlGgVSzJoFkdAreUVtQ9A5nV9lChoBmgJaA9DCKSl8naEEwzAlIaUUpRoFUsyaBZHQK3li0Mw1zh1fZQoaAZoCWgPQwgl5llJK14AwJSGlFKUaBVLMmgWR0Ct5gRzRx95dX2UKGgGaAloD0MISkONQpJ5A8CUhpRSlGgVSzJoFkdAreZ6MHbAUXV9lChoBmgJaA9DCH9Ma9PYXvS/lIaUUpRoFUsyaBZHQK3m8nrIHTt1fZQoaAZoCWgPQwi3mnXG98X9v5SGlFKUaBVLMmgWR0Ct52l/QSi/dX2UKGgGaAloD0MIiuQrgZQY8r+UhpRSlGgVSzJoFkdArefhUvPC23V9lChoBmgJaA9DCDjZBu5AvQDAlIaUUpRoFUsyaBZHQK3oXmwJPZZ1fZQoaAZoCWgPQwgFwePbuwYJwJSGlFKUaBVLMmgWR0Ct6N5FXq7idX2UKGgGaAloD0MIYLAbti0K8b+UhpRSlGgVSzJoFkdArelU4m1IAnV9lChoBmgJaA9DCC2WIvlKoPm/lIaUUpRoFUsyaBZHQK3pyc5Ke051fZQoaAZoCWgPQwgOZaiKqXTyv5SGlFKUaBVLMmgWR0Ct6j/7aZhKdX2UKGgGaAloD0MIUG1wIvo187+UhpRSlGgVSzJoFkdAreq0IcBEKHV9lChoBmgJaA9DCJc5XRYTG+2/lIaUUpRoFUsyaBZHQK3rLjwQUYd1fZQoaAZoCWgPQwitad5xio7rv5SGlFKUaBVLMmgWR0Ct68SpaRp2dX2UKGgGaAloD0MIHVn5ZTDmCMCUhpRSlGgVSzJoFkdArew99BrvcHV9lChoBmgJaA9DCOYffZOmQfK/lIaUUpRoFUsyaBZHQK3stCwbEP11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 143924, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (331 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.483343765232712, "std_reward": 0.4472493549670323, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T09:47:15.422258"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99634633140b488118af510d86fb9974c6d73b1eacc6470e1c8583cbf7ab4fad
3
+ size 3056