tlemberger
commited on
Commit
•
69f94ab
1
Parent(s):
b549403
update with new training param
Browse files
README.md
CHANGED
@@ -1,3 +1,86 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
license: agpl-3.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- english
|
4 |
+
thumbnail:
|
5 |
+
tags:
|
6 |
+
- token classification
|
7 |
license: agpl-3.0
|
8 |
+
datasets:
|
9 |
+
- EMBO/sd-panels
|
10 |
+
metrics:
|
11 |
+
-
|
12 |
---
|
13 |
+
|
14 |
+
# sd-smallmol-roles
|
15 |
+
|
16 |
+
## Model description
|
17 |
+
|
18 |
+
This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It has then been fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `SMALL_MOL_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities.
|
19 |
+
|
20 |
+
|
21 |
+
## Intended uses & limitations
|
22 |
+
|
23 |
+
#### How to use
|
24 |
+
|
25 |
+
The intended use of this model is to infer the semantic role of small molecules with regard to the causal hypotheses tested in experiments reported in scientific papers.
|
26 |
+
|
27 |
+
To have a quick check of the model:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification
|
31 |
+
example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>"""
|
32 |
+
tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512)
|
33 |
+
model = RobertaForTokenClassification.from_pretrained('EMBO/sd-roles')
|
34 |
+
ner = pipeline('ner', model, tokenizer=tokenizer)
|
35 |
+
res = ner(example)
|
36 |
+
for r in res:
|
37 |
+
print(r['word'], r['entity'])
|
38 |
+
```
|
39 |
+
|
40 |
+
#### Limitations and bias
|
41 |
+
|
42 |
+
The model must be used with the `roberta-base` tokenizer.
|
43 |
+
|
44 |
+
## Training data
|
45 |
+
|
46 |
+
The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-panels) which includes manually annotated examples.
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs.
|
51 |
+
|
52 |
+
Training code is available at https://github.com/source-data/soda-roberta
|
53 |
+
|
54 |
+
- Model fine tuned: EMBL/bio-lm
|
55 |
+
- Tokenizer vocab size: 50265
|
56 |
+
- Training data: EMBO/sd-nlp
|
57 |
+
- Dataset configuration: SMALL_MOL_ROLES
|
58 |
+
- Training with 48771 examples.
|
59 |
+
- Evaluating on 13801 examples.
|
60 |
+
- Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR
|
61 |
+
- Epochs: 0.33
|
62 |
+
- `per_device_train_batch_size`: 16
|
63 |
+
- `per_device_eval_batch_size`: 16
|
64 |
+
- `learning_rate`: 0.0001
|
65 |
+
- `weight_decay`: 0.0
|
66 |
+
- `adam_beta1`: 0.9
|
67 |
+
- `adam_beta2`: 0.999
|
68 |
+
- `adam_epsilon`: 1e-08
|
69 |
+
- `max_grad_norm`: 1.0
|
70 |
+
|
71 |
+
## Eval results
|
72 |
+
|
73 |
+
On 7178 example of test set with `sklearn.metrics`:
|
74 |
+
|
75 |
+
```
|
76 |
+
precision recall f1-score support
|
77 |
+
|
78 |
+
CONTROLLED_VAR 0.76 0.90 0.83 2946
|
79 |
+
MEASURED_VAR 0.60 0.71 0.65 852
|
80 |
+
|
81 |
+
micro avg 0.73 0.86 0.79 3798
|
82 |
+
macro avg 0.68 0.80 0.74 3798
|
83 |
+
weighted avg 0.73 0.86 0.79 3798
|
84 |
+
|
85 |
+
{'test_loss': 0.011743436567485332, 'test_accuracy_score': 0.9951612532624371, 'test_precision': 0.7261345852895149, 'test_recall': 0.8551869404949973, 'test_f1': 0.7853947527505744, 'test_runtime': 58.0378, 'test_samples_per_second': 123.678, 'test_steps_per_second': 1.947}
|
86 |
+
```
|