|
import spaces |
|
import random |
|
import torch |
|
from huggingface_hub import snapshot_download |
|
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor |
|
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256 |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from kolors.models import unet_2d_condition |
|
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel |
|
import gradio as gr |
|
import numpy as np |
|
from huggingface_hub import InferenceClient |
|
import os |
|
|
|
device = "cuda" |
|
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") |
|
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus") |
|
|
|
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") |
|
unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) |
|
unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device) |
|
ip_img_size = 336 |
|
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) |
|
|
|
pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet_t2i, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False |
|
).to(device) |
|
|
|
pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet_i2i, |
|
scheduler=scheduler, |
|
image_encoder=image_encoder, |
|
feature_extractor=clip_image_processor, |
|
force_zeros_for_empty_prompt=False |
|
).to(device) |
|
|
|
if hasattr(pipe_i2i.unet, 'encoder_hid_proj'): |
|
pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj |
|
|
|
pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
@spaces.GPU |
|
def infer(prompt, |
|
ip_adapter_image = None, |
|
ip_adapter_scale = 0.5, |
|
negative_prompt = "", |
|
seed = 0, |
|
randomize_seed = False, |
|
width = 1024, |
|
height = 1024, |
|
guidance_scale = 5.0, |
|
num_inference_steps = 25 |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if ip_adapter_image is None: |
|
pipe_t2i.to(device) |
|
image = pipe_t2i( |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
guidance_scale = guidance_scale, |
|
num_inference_steps = num_inference_steps, |
|
width = width, |
|
height = height, |
|
generator = generator |
|
).images[0] |
|
image.save("generated_image.jpg") |
|
return image, "generated_image.jpg" |
|
else: |
|
pipe_i2i.to(device) |
|
image_encoder.to(device) |
|
pipe_i2i.image_encoder = image_encoder |
|
pipe_i2i.set_ip_adapter_scale([ip_adapter_scale]) |
|
image = pipe_i2i( |
|
prompt=prompt, |
|
ip_adapter_image=[ip_adapter_image], |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
generator=generator |
|
).images[0] |
|
image.save("generated_image.jpg") |
|
return image, "generated_image.jpg" |
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 600px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 750px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as Kolors: |
|
with gr.Row(): |
|
with gr.Column(elem_id="col-left"): |
|
with gr.Row(): |
|
generated_prompt = gr.Textbox( |
|
label="ํ๋กฌํํธ ์
๋ ฅ", |
|
placeholder="์ด๋ฏธ์ง ์์ฑ์ ์ฌ์ฉํ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์", |
|
lines=2 |
|
) |
|
with gr.Row(): |
|
ip_adapter_image = gr.Image(label="Image Prompt (optional)", type="pil") |
|
with gr.Row(visible=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=10, |
|
maximum=50, |
|
step=1, |
|
value=25, |
|
) |
|
with gr.Row(): |
|
ip_adapter_scale = gr.Slider( |
|
label="Image influence scale", |
|
info="Use 1 for creating variations", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.5, |
|
) |
|
with gr.Row(): |
|
run_button = gr.Button("Generate Image") |
|
|
|
with gr.Column(elem_id="col-right"): |
|
result = gr.Image(label="Result", show_label=False) |
|
download_button = gr.File(label="Download Image") |
|
|
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result, download_button] |
|
) |
|
|
|
Kolors.queue().launch(debug=True) |
|
|