Update README.md
Browse files
README.md
CHANGED
@@ -30,7 +30,7 @@ Then you can use the model like this:
|
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
32 |
|
33 |
-
model = SentenceTransformer('{
|
34 |
embeddings = model.encode(sentences)
|
35 |
print(embeddings)
|
36 |
```
|
@@ -56,8 +56,8 @@ def mean_pooling(model_output, attention_mask):
|
|
56 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
57 |
|
58 |
# Load model from HuggingFace Hub
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
60 |
-
model = AutoModel.from_pretrained('
|
61 |
|
62 |
# Tokenize sentences
|
63 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
32 |
|
33 |
+
model = SentenceTransformer('{EZlee/e-commerce-bert-base-multilingual-cased}')
|
34 |
embeddings = model.encode(sentences)
|
35 |
print(embeddings)
|
36 |
```
|
|
|
56 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
57 |
|
58 |
# Load model from HuggingFace Hub
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained('EZlee/e-commerce-bert-base-multilingual-cased')
|
60 |
+
model = AutoModel.from_pretrained('EZlee/e-commerce-bert-base-multilingual-cased')
|
61 |
|
62 |
# Tokenize sentences
|
63 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|