EZlee commited on
Commit
13376c4
1 Parent(s): 77bd142

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -30,7 +30,7 @@ Then you can use the model like this:
30
  from sentence_transformers import SentenceTransformer
31
  sentences = ["This is an example sentence", "Each sentence is converted"]
32
 
33
- model = SentenceTransformer('{MODEL_NAME}')
34
  embeddings = model.encode(sentences)
35
  print(embeddings)
36
  ```
@@ -56,8 +56,8 @@ def mean_pooling(model_output, attention_mask):
56
  sentences = ['This is an example sentence', 'Each sentence is converted']
57
 
58
  # Load model from HuggingFace Hub
59
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
60
- model = AutoModel.from_pretrained('{MODEL_NAME}')
61
 
62
  # Tokenize sentences
63
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
30
  from sentence_transformers import SentenceTransformer
31
  sentences = ["This is an example sentence", "Each sentence is converted"]
32
 
33
+ model = SentenceTransformer('{EZlee/e-commerce-bert-base-multilingual-cased}')
34
  embeddings = model.encode(sentences)
35
  print(embeddings)
36
  ```
 
56
  sentences = ['This is an example sentence', 'Each sentence is converted']
57
 
58
  # Load model from HuggingFace Hub
59
+ tokenizer = AutoTokenizer.from_pretrained('EZlee/e-commerce-bert-base-multilingual-cased')
60
+ model = AutoModel.from_pretrained('EZlee/e-commerce-bert-base-multilingual-cased')
61
 
62
  # Tokenize sentences
63
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')