erfanzar commited on
Commit
3c05116
·
verified ·
1 Parent(s): 77b164b

Upload Qwen2ForCausalLM

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +55 -174
  3. config.json +96 -0
  4. easydel-model.parameters +3 -0
  5. generation_config.json +14 -0
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ easydel-model.parameters filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,199 +1,80 @@
 
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
+
2
  ---
3
+ tags:
4
+ - EasyDeL
5
+ - Qwen2ForCausalLM
6
+ - safetensors
7
+ - TPU
8
+ - GPU
9
+ - XLA
10
+ - Flax
11
  ---
12
+ # EasyDeL/GRPO-Qwen2-0.5b-instruct
13
 
14
+ [![EasyDeL](https://img.shields.io/badge/🤗_EasyDeL-0.1.0-blue.svg)](https://github.com/erfanzar/EasyDeL)
15
+ [![Model Type](https://img.shields.io/badge/Model_Type-Qwen2ForCausalLM-green.svg)](https://github.com/erfanzar/EasyDeL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ A model implemented using the EasyDeL framework, designed to deliver optimal performance for large-scale natural language processing tasks.
18
 
19
+ ## Overview
20
 
21
+ EasyDeL provides an efficient, highly-optimized, and customizable machine learning model compatible with both GPU and TPU environments. Built with JAX, this model supports advanced features such as sharded model parallelism, making it suitable for distributed training and inference and customized kernels.
22
 
23
+ ## Features
24
 
 
25
 
26
+ - **Efficient Implementation**: Built with JAX/Flax for high-performance computation.
27
+ - **Multi-Device Support**: Optimized to run on TPU, GPU, and CPU environments for sharding model over 2^(1-1000+) of devices.
28
+ - **Sharded Model Parallelism**: Supports model parallelism across multiple devices for scalability.
29
+ - **Customizable Precision**: Allows specification of floating-point precision for performance optimization.
30
 
 
31
 
32
+ ## Installation
33
 
34
+ To install EasyDeL, simply run:
35
 
36
+ ```bash
37
+ pip install easydel
38
+ ```
39
 
40
+ ## Usage
41
 
42
+ ### Loading the Pre-trained Model
43
 
44
+ To load a pre-trained version of the model with EasyDeL:
45
 
46
+ ```python
47
+ from easydel import AutoEasyDeLModelForCausalLM
48
+ from jax import numpy as jnp, lax
49
 
50
+ max_length = None # can be set to use lower memory for caching
51
 
52
+ # Load model and parameters
53
+ model = AutoEasyDeLModelForCausalLM.from_pretrained(
54
+ "EasyDeL/GRPO-Qwen2-0.5b-instruct",
55
+ config_kwargs=ed.EasyDeLBaseConfigDict(
56
+ use_scan_mlp=False,
57
+ attn_dtype=jnp.float16,
58
+ freq_max_position_embeddings=max_length,
59
+ mask_max_position_embeddings=max_length,
60
+ attn_mechanism=ed.AttentionMechanisms.FLASH_ATTN2
61
+ ),
62
+ dtype=jnp.float16,
63
+ param_dtype=jnp.float16,
64
+ precision=lax.Precision("fastest"),
65
+ auto_shard_model=True,
66
+ )
67
+ ```
68
 
69
+ ## Supported Tasks
70
 
 
71
 
72
+ [Need more information]
73
 
74
+
75
+ ## Limitations
76
 
 
77
 
78
+ - **Hardware Dependency**: Performance can vary significantly based on the hardware used.
79
+ - **JAX/Flax Setup Required**: The environment must support JAX/Flax for optimal use.
80
+ - **Experimental Features**: Some features (like custom kernel usage or ed-ops) may require additional configuration and tuning.
config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_axis_name": "sp",
6
+ "attention_dropout": 0.0,
7
+ "attn_mechanism": "vanilla",
8
+ "axis_dims": [
9
+ 1,
10
+ 1,
11
+ -1,
12
+ 1
13
+ ],
14
+ "axis_names": [
15
+ "dp",
16
+ "fsdp",
17
+ "tp",
18
+ "sp"
19
+ ],
20
+ "backend": null,
21
+ "bits": null,
22
+ "blocksize_b": 1,
23
+ "blocksize_k": 128,
24
+ "blocksize_q": 128,
25
+ "bos_token_id": 151643,
26
+ "easy_method": "train",
27
+ "embd_pdrop": 0.0,
28
+ "eos_token_id": 151645,
29
+ "fcm_max_ratio": 0.0,
30
+ "fcm_min_ratio": 0.0,
31
+ "flash_attention_backward_pass_impl": "triton",
32
+ "freq_max_position_embeddings": 2048,
33
+ "gradient_checkpointing": "",
34
+ "hardware_abstraction": false,
35
+ "head_dim": 64,
36
+ "hidden_act": "silu",
37
+ "hidden_size": 896,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 4864,
40
+ "kv_cache_quantization_blocksize": 64,
41
+ "kv_cache_quantization_method": "None",
42
+ "kv_cache_sharding_sequence_axis_name": "sp",
43
+ "mask_max_position_embeddings": 2048,
44
+ "max_position_embeddings": 32768,
45
+ "max_window_layers": 24,
46
+ "model_type": "qwen2",
47
+ "num_attention_heads": 14,
48
+ "num_hidden_layers": 24,
49
+ "num_key_value_heads": 2,
50
+ "number_rep_kv": 1,
51
+ "pallas_k_block_size": null,
52
+ "pallas_m_block_size": null,
53
+ "pallas_n_block_size": null,
54
+ "partition_axis": [
55
+ [
56
+ "fsdp",
57
+ "dp"
58
+ ],
59
+ "sp",
60
+ "sp",
61
+ "tp",
62
+ "sp",
63
+ "tp",
64
+ null,
65
+ null,
66
+ null,
67
+ null,
68
+ "tp",
69
+ "sp",
70
+ null
71
+ ],
72
+ "platform": null,
73
+ "pretraining_tp": 1,
74
+ "quantization_blocksize": 64,
75
+ "quantization_method": "None",
76
+ "quantization_pattern": ".*",
77
+ "resid_pdrop": 0.0,
78
+ "rms_norm_eps": 1e-06,
79
+ "rope_scaling": null,
80
+ "rope_theta": 10000.0,
81
+ "scan_attention_layers": false,
82
+ "scan_layers": true,
83
+ "scan_mlp_chunk_size": 1024,
84
+ "scan_ring_attention": true,
85
+ "shard_attention_computation": true,
86
+ "sliding_window": 32768,
87
+ "tie_word_embeddings": false,
88
+ "torch_dtype": "bfloat16",
89
+ "transformers_version": "4.47.1",
90
+ "use_cache": true,
91
+ "use_scan_mlp": false,
92
+ "use_sharded_kv_caching": false,
93
+ "use_sharding_constraint": false,
94
+ "use_sliding_window": false,
95
+ "vocab_size": 151936
96
+ }
easydel-model.parameters ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f00a1106fffe9c2a726462959d295495a83efc6bdf012d34bb71e3c76dd7a520
3
+ size 1260367416
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.47.1"
14
+ }