---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.3
model-index:
- name: tinyllama-colorist-lora-v0.3
results: []
---
tinyllama-colorist-lora-v0.3
![image/png](https://cdn-uploads.huggingface.co/production/uploads/628fcb73267c3813eb5ae99d/UMg3Uviv6JcwD4D6Vil7o.png)
This model, `tinyllama-colorist-lora-v0.3`, is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.3](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) on the color dataset.
## Study Motivation
To study this new TinyLlama model as a replacement for Llama2 for resource-constrained environment. Also, in the future I will perform the Fine-Tuning of this model for Chat and for a specific domain in Portuguese and Spanish 🤗.
## Prompt format
The model training process is similar to the regular Llama2 model with a chat prompt format like this:
```
<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n
```
## Instructions for use
```
User Input: Give me a sky blue color.
LLM response: #6092ff
```
## Model usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
def print_color_space(hex_color):
def hex_to_rgb(hex_color):
hex_color = hex_color.lstrip('#')
return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
r, g, b = hex_to_rgb(hex_color)
print(f'{hex_color}: \033[48;2;{r};{g};{b}m \033[0m')
tokenizer = AutoTokenizer.from_pretrained(model_id_colorist_final)
pipe = pipeline(
"text-generation",
model=model_id_colorist_final,
torch_dtype=torch.float16,
device_map="auto",
)
from time import perf_counter
start_time = perf_counter()
prompt = formatted_prompt('give me a pure brown color')
sequences = pipe(
prompt,
do_sample=True,
temperature=0.1,
top_p=0.9,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=12
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
output_time = perf_counter() - start_time
print(f"Time taken for inference: {round(output_time,2)} seconds")
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2