File size: 4,373 Bytes
08d7316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: pleias_outputs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.2`
```yaml
base_model: ./pleias_erebus
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
#datasets:
# - path: Mielikki/Erebus-87k
# type: completion
# field: body
# - path: allura-org/r_shortstories_24k
# type: completion
# field: text
datasets:
- path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
- path: anthracite-org/kalo_misc_part2
- path: anthracite-org/kalo_opus_misc_240827
- path: Nitral-AI/Olympiad_Math-ShareGPT
- path: Nitral-AI/Cybersecurity-ShareGPT
- path: Nitral-AI/Medical_Instruct-ShareGPT
- path: NewEden/Claude-Instruct-2.7K
- path: NewEden/Claude-Instruct-5K
dataset_config:
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
roles_to_train: ["gpt"]
train_on_eos: "turn"
#chat_template: jinja
#chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
chat_template: chatml
output_dir: ./pleias_outputs
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: Pleias-Baldur
wandb_entity:
wandb_watch:
wandb_name: run-2
wandb_log_model:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_layer_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
#gradient_checkpointing: unsloth
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
#auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 25
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
weight_decay: 0.02
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
#deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
fsdp:
fsdp_config:
special_tokens:
bos_token: '<|begin_of_text|>'
eos_token: '<|end_of_text|>'
pad_token: '[PAD]'
```
</details><br>
# pleias_outputs
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|