[paths] train = null dev = null vectors = null init_tok2vec = null [system] gpu_allocator = null seed = 0 [nlp] lang = "en" pipeline = ["textcat_multilabel"] batch_size = 1000 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} vectors = {"@vectors":"spacy.Vectors.v1"} [components] [components.textcat_multilabel] factory = "textcat_multilabel" scorer = {"@scorers":"spacy.textcat_multilabel_scorer.v2"} threshold = 0.5 [components.textcat_multilabel.model] @architectures = "spacy.TextCatBOW.v3" exclusive_classes = false length = 262144 ngram_size = 1 no_output_layer = false nO = null [corpora] @readers = "prodigy.MergedCorpus.v1" eval_split = 0.2 sample_size = 1.0 ner = null textcat = null parser = null tagger = null senter = null spancat = null experimental_coref = null [corpora.textcat_multilabel] @readers = "prodigy.TextCatCorpus.v1" datasets = ["textcat_phoebus_spam"] eval_datasets = [] exclusive = false [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] cats_score = 1.0 cats_score_desc = null cats_micro_p = null cats_micro_r = null cats_micro_f = null cats_macro_p = null cats_macro_r = null cats_macro_f = null cats_macro_auc = null cats_f_per_type = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer]