MUPE_Accented_paper
/
Experiments
/runs
/YourTTS-Baseline-PT-January-27-2024_12+00PM-e3c7cbd05
/train_syntacc_baseline.py
import os | |
import torch | |
from trainer import Trainer, TrainerArgs | |
from TTS.bin.compute_embeddings import compute_embeddings | |
from TTS.bin.resample import resample_files | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.configs.vits_config import VitsConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig, VitsDataset | |
from TTS.utils.downloaders import download_libri_tts | |
from torch.utils.data import DataLoader | |
from TTS.utils.samplers import PerfectBatchSampler | |
torch.set_num_threads(24) | |
# pylint: disable=W0105 | |
""" | |
This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model. | |
YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes. | |
""" | |
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) | |
# Name of the run for the Trainer | |
RUN_NAME = "YourTTS-Baseline-PT" | |
# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs) | |
OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "runs") # "/raid/coqui/Checkpoints/original-YourTTS/" | |
# If you want to do transfer learning and speedup your training you can set here the path to the CML-TTS available checkpoint that cam be downloaded here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p | |
RESTORE_PATH = "/raid/datasets/MUPE/Experiments/runs/YourTTS-Syntacc-PT-January-25-2024_02+59PM-0000000/checkpoint_85000.pth" # Download the checkpoint here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p | |
# This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences | |
SKIP_TRAIN_EPOCH = False | |
# Set here the batch size to be used in training and evaluation | |
BATCH_SIZE = 26 | |
# Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!) | |
# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios | |
SAMPLE_RATE = 16000 | |
DASHBOARD_LOGGER="tensorboard" | |
LOGGER_URI = None | |
DASHBOARD_LOGGER = "clearml" | |
LOGGER_URI = "s3://coqui-ai-models/TTS/Checkpoints/YourTTS/MUPE/" | |
# Max audio length in seconds to be used in training (every audio bigger than it will be ignored) | |
MAX_AUDIO_LEN_IN_SECONDS = float("inf") | |
# Define here the datasets config | |
brpb_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brpb.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brpb" | |
) | |
brba_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brba.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brba" | |
) | |
brportugal_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brportugal.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brportugal" | |
) | |
brsp_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brsp.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brsp" | |
) | |
brpe_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brpe.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brpe" | |
) | |
brmg_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brmg.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brmg" | |
) | |
brrj_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brrj.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brrj" | |
) | |
brce_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brce.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brce" | |
) | |
brrs_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brrs.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brrs" | |
) | |
bralemanha_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_bralemanha.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="bralemanha" | |
) | |
brgo_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brgo.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brgo" | |
) | |
bral_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_bral.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="bral" | |
) | |
brpr_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brpr.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brpr" | |
) | |
bres_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_bres.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="bres" | |
) | |
brpi_train_config = BaseDatasetConfig( | |
formatter="coqui", | |
dataset_name="mupe", | |
meta_file_train="metadata_coqui_brpi.csv", | |
path="/raid/datasets/MUPE/dataset/mupe/", | |
language="brpi" | |
) | |
# bres_train_config, brpi_train_config no files found | |
DATASETS_CONFIG_LIST = [brpb_train_config,brba_train_config,brportugal_train_config,brsp_train_config,brpe_train_config,brmg_train_config,brrj_train_config,brce_train_config,brrs_train_config,bralemanha_train_config,brgo_train_config,bral_train_config,brpr_train_config] | |
### Extract speaker embeddings | |
SPEAKER_ENCODER_CHECKPOINT_PATH = ( | |
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar" | |
) | |
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json" | |
D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training | |
# Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it | |
for dataset_conf in DATASETS_CONFIG_LIST: | |
# Check if the embeddings weren't already computed, if not compute it | |
embeddings_file = os.path.join(dataset_conf.path, f"H_ASP_speaker_embeddings_{dataset_conf.language}.pth") | |
if not os.path.isfile(embeddings_file): | |
print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset") | |
compute_embeddings( | |
SPEAKER_ENCODER_CHECKPOINT_PATH, | |
SPEAKER_ENCODER_CONFIG_PATH, | |
embeddings_file, | |
old_speakers_file=None, | |
config_dataset_path=None, | |
formatter_name=dataset_conf.formatter, | |
dataset_name=dataset_conf.dataset_name, | |
dataset_path=dataset_conf.path, | |
meta_file_train=dataset_conf.meta_file_train, | |
meta_file_val=dataset_conf.meta_file_val, | |
disable_cuda=False, | |
no_eval=False, | |
) | |
D_VECTOR_FILES.append(embeddings_file) | |
# Audio config used in training. | |
audio_config = VitsAudioConfig( | |
sample_rate=SAMPLE_RATE, | |
hop_length=256, | |
win_length=1024, | |
fft_size=1024, | |
mel_fmin=0.0, | |
mel_fmax=None, | |
num_mels=80, | |
) | |
# Init VITSArgs setting the arguments that are needed for the YourTTS model | |
model_args = VitsArgs( | |
spec_segment_size=62, | |
hidden_channels=192, | |
hidden_channels_ffn_text_encoder=768, | |
num_heads_text_encoder=2, | |
num_layers_text_encoder=10, | |
kernel_size_text_encoder=3, | |
dropout_p_text_encoder=0.1, | |
d_vector_file=D_VECTOR_FILES, | |
use_d_vector_file=True, | |
d_vector_dim=512, | |
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH, | |
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH, | |
resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model | |
# Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper | |
use_speaker_encoder_as_loss=False, | |
# Useful parameters to enable multilingual training | |
use_language_embedding=True, | |
embedded_language_dim=4, | |
use_adaptive_weight_text_encoder=False, | |
use_perfect_class_batch_sampler=True, | |
perfect_class_batch_sampler_key="language" | |
) | |
# General training config, here you can change the batch size and others useful parameters | |
config = VitsConfig( | |
output_path=OUT_PATH, | |
model_args=model_args, | |
run_name=RUN_NAME, | |
project_name="SYNTACC", | |
run_description=""" | |
- YourTTS with SYNTACC text encoder | |
""", | |
dashboard_logger=DASHBOARD_LOGGER, | |
logger_uri=LOGGER_URI, | |
audio=audio_config, | |
batch_size=BATCH_SIZE, | |
batch_group_size=48, | |
eval_batch_size=BATCH_SIZE, | |
num_loader_workers=8, | |
eval_split_max_size=256, | |
print_step=50, | |
plot_step=100, | |
log_model_step=1000, | |
save_step=5000, | |
save_n_checkpoints=2, | |
save_checkpoints=True, | |
# target_loss="loss_1", | |
print_eval=False, | |
use_phonemes=False, | |
phonemizer="espeak", | |
phoneme_language="en", | |
compute_input_seq_cache=True, | |
add_blank=True, | |
text_cleaner="multilingual_cleaners", | |
characters=CharactersConfig( | |
characters_class="TTS.tts.models.vits.VitsCharacters", | |
pad="_", | |
eos="&", | |
bos="*", | |
blank=None, | |
characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20", | |
punctuations="\u2014!'(),-.:;?\u00bf ", | |
phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ", | |
is_unique=True, | |
is_sorted=True, | |
), | |
phoneme_cache_path=None, | |
precompute_num_workers=12, | |
start_by_longest=True, | |
datasets=DATASETS_CONFIG_LIST, | |
cudnn_benchmark=False, | |
max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS, | |
mixed_precision=False, | |
test_sentences=[ | |
#GUSTAVO: apenas pessoas do treino | |
["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "EDILEINE_FONSECA", None, "brsp"], | |
["Quem semeia ventos, colhe tempestades.", "JOSE_PAULO_DE_ARAUJO", None, "brpb"], | |
["O olho do dono \u00e9 que engorda o gado.", "VITOR_RAFAEL_OLIVEIRA_ALVES", None, "brba"], | |
["\u00c1gua mole em pedra dura, tanto bate at\u00e9 que fura.", "MARIA_AURORA_FELIX", None, "brportugal"], | |
["Quem espera sempre alcan\u00e7a.", "ANTONIO_DE_AMORIM_COSTA", None, "brpe"], | |
["Cada macaco no seu galho.", "ALCIDES_DE_LIMA", None, "brmg"], | |
["Em terra de cego, quem tem um olho \u00e9 rei.", "ALUISIO_SOARES_DE_SOUSA", None, "brrj"], | |
["A ocasi\u00e3o faz o ladr\u00e3o.", "FRANCISCO_JOSE_MOREIRA_MOTA", None, "brce"], | |
["De gr\u00e3o em gr\u00e3o, a galinha enche o papo.", "EVALDO_ANDRADA_CORREA", None, "brrs"], | |
["Mais vale um p\u00c1ssaro na m\u00e3o do que dois voando.", "DORIS_ALEXANDER", None, "bralemanha"], | |
["Quem n\u00e3o arrisca, n\u00e3o petisca.", "DONALDO_LUIZ_DE_ALMEIDA", None, "brgo"], | |
["A uni\u00e3o faz a for\u00e7a.", "GERONCIO_HENRIQUE_NETO", None, "bral"], | |
["Em boca fechada n\u00e3o entra mosquito.", "MALU_NATEL_FREIRE_WEBER", None, "brpr"], | |
# ["Quem n\u00e3o tem dinheiro, n\u00e3o tem v\u00edcios.", "INES_VIEIRA_BOGEA", None, "bres"], | |
# ["Quando voc\u00ea n\u00e3o corre nenhum risco, voc\u00ea arrisca tudo.", "MARIA_ASSUNCAO_SOUSA", None, "brpi"] | |
], | |
# Enable the weighted sampler | |
use_weighted_sampler=True, | |
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has | |
# weighted_sampler_attrs={"language": 1.0, "speaker_name": 1.0}, | |
weighted_sampler_attrs={"language": 1.0}, | |
weighted_sampler_multipliers={ | |
# "speaker_name": { | |
# you can force the batching scheme to give a higher weight to a certain speaker and then this speaker will appears more frequently on the batch. | |
# It will speedup the speaker adaptation process. Considering the CML train dataset and "new_speaker" as the speaker name of the speaker that you want to adapt. | |
# The line above will make the balancer consider the "new_speaker" as 106 speakers so 1/4 of the number of speakers present on CML dataset. | |
# 'new_speaker': 106, # (CML tot. train speaker)/4 = (424/4) = 106 | |
# } | |
}, | |
# It defines the Speaker Consistency Loss (SCL) α to 9 like the YourTTS paper | |
speaker_encoder_loss_alpha=9.0, | |
) | |
# Load all the datasets samples and split traning and evaluation sets | |
train_samples, eval_samples = load_tts_samples( | |
config.datasets, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# Init the model | |
model = Vits.init_from_config(config) | |
# Init the trainer and 🚀 | |
trainer = Trainer( | |
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH, start_with_eval=True), | |
config, | |
output_path=OUT_PATH, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |