MUPE_Accented_paper / Experiments /train_syntacc.py
Edresson's picture
Update
1dfa9fd
raw
history blame
14.5 kB
import os
import torch
from trainer import Trainer, TrainerArgs
from TTS.bin.compute_embeddings import compute_embeddings
from TTS.bin.resample import resample_files
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig, VitsDataset
from TTS.utils.downloaders import download_libri_tts
from torch.utils.data import DataLoader
from TTS.utils.samplers import PerfectBatchSampler
torch.set_num_threads(24)
# pylint: disable=W0105
"""
This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model.
YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes.
"""
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__))
# Name of the run for the Trainer
RUN_NAME = "YourTTS-Syntacc-PT"
# Path where you want to save the models outputs (configs, checkpoints and tensorboard logs)
OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "runs") # "/raid/coqui/Checkpoints/original-YourTTS/"
# If you want to do transfer learning and speedup your training you can set here the path to the CML-TTS available checkpoint that cam be downloaded here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p
RESTORE_PATH = "/raid/datasets/MUPE/Experiments/runs/YourTTS-Syntacc-PT-January-25-2024_02+59PM-0000000/checkpoint_85000.pth" # Download the checkpoint here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p
# This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences
SKIP_TRAIN_EPOCH = False
# Set here the batch size to be used in training and evaluation
BATCH_SIZE = 26
# Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!)
# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios
SAMPLE_RATE = 16000
DASHBOARD_LOGGER="tensorboard"
LOGGER_URI = None
DASHBOARD_LOGGER = "clearml"
LOGGER_URI = "s3://coqui-ai-models/TTS/Checkpoints/YourTTS/MUPE/"
# Max audio length in seconds to be used in training (every audio bigger than it will be ignored)
MAX_AUDIO_LEN_IN_SECONDS = float("inf")
# Define here the datasets config
brpb_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brpb.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brpb"
)
brba_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brba.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brba"
)
brportugal_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brportugal.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brportugal"
)
brsp_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brsp.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brsp"
)
brpe_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brpe.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brpe"
)
brmg_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brmg.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brmg"
)
brrj_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brrj.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brrj"
)
brce_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brce.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brce"
)
brrs_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brrs.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brrs"
)
bralemanha_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_bralemanha.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="bralemanha"
)
brgo_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brgo.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brgo"
)
bral_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_bral.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="bral"
)
brpr_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brpr.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brpr"
)
bres_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_bres.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="bres"
)
brpi_train_config = BaseDatasetConfig(
formatter="coqui",
dataset_name="mupe",
meta_file_train="metadata_coqui_brpi.csv",
path="/raid/datasets/MUPE/dataset/mupe/",
language="brpi"
)
# bres_train_config, brpi_train_config no files found
DATASETS_CONFIG_LIST = [brpb_train_config,brba_train_config,brportugal_train_config,brsp_train_config,brpe_train_config,brmg_train_config,brrj_train_config,brce_train_config,brrs_train_config,bralemanha_train_config,brgo_train_config,bral_train_config,brpr_train_config]
### Extract speaker embeddings
SPEAKER_ENCODER_CHECKPOINT_PATH = (
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
)
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"
D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training
# Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it
for dataset_conf in DATASETS_CONFIG_LIST:
# Check if the embeddings weren't already computed, if not compute it
embeddings_file = os.path.join(dataset_conf.path, f"H_ASP_speaker_embeddings_{dataset_conf.language}.pth")
if not os.path.isfile(embeddings_file):
print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset")
compute_embeddings(
SPEAKER_ENCODER_CHECKPOINT_PATH,
SPEAKER_ENCODER_CONFIG_PATH,
embeddings_file,
old_speakers_file=None,
config_dataset_path=None,
formatter_name=dataset_conf.formatter,
dataset_name=dataset_conf.dataset_name,
dataset_path=dataset_conf.path,
meta_file_train=dataset_conf.meta_file_train,
meta_file_val=dataset_conf.meta_file_val,
disable_cuda=False,
no_eval=False,
)
D_VECTOR_FILES.append(embeddings_file)
# Audio config used in training.
audio_config = VitsAudioConfig(
sample_rate=SAMPLE_RATE,
hop_length=256,
win_length=1024,
fft_size=1024,
mel_fmin=0.0,
mel_fmax=None,
num_mels=80,
)
# Init VITSArgs setting the arguments that are needed for the YourTTS model
model_args = VitsArgs(
spec_segment_size=62,
hidden_channels=192,
hidden_channels_ffn_text_encoder=768,
num_heads_text_encoder=2,
num_layers_text_encoder=10,
kernel_size_text_encoder=3,
dropout_p_text_encoder=0.1,
d_vector_file=D_VECTOR_FILES,
use_d_vector_file=True,
d_vector_dim=512,
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model
# Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper
use_speaker_encoder_as_loss=False,
# Useful parameters to enable multilingual training
use_language_embedding=False,
embedded_language_dim=4,
use_adaptive_weight_text_encoder=True,
use_perfect_class_batch_sampler=True,
perfect_class_batch_sampler_key="language"
)
# General training config, here you can change the batch size and others useful parameters
config = VitsConfig(
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name="SYNTACC",
run_description="""
- YourTTS with SYNTACC text encoder
""",
dashboard_logger=DASHBOARD_LOGGER,
logger_uri=LOGGER_URI,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
eval_split_max_size=256,
print_step=50,
plot_step=100,
log_model_step=1000,
save_step=5000,
save_n_checkpoints=2,
save_checkpoints=True,
# target_loss="loss_1",
print_eval=False,
use_phonemes=False,
phonemizer="espeak",
phoneme_language="en",
compute_input_seq_cache=True,
add_blank=True,
text_cleaner="multilingual_cleaners",
characters=CharactersConfig(
characters_class="TTS.tts.models.vits.VitsCharacters",
pad="_",
eos="&",
bos="*",
blank=None,
characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20",
punctuations="\u2014!'(),-.:;?\u00bf ",
phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ",
is_unique=True,
is_sorted=True,
),
phoneme_cache_path=None,
precompute_num_workers=12,
start_by_longest=True,
datasets=DATASETS_CONFIG_LIST,
cudnn_benchmark=False,
max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS,
mixed_precision=False,
test_sentences=[
#GUSTAVO: apenas pessoas do treino
["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "EDILEINE_FONSECA", None, "brsp"],
["Quem semeia ventos, colhe tempestades.", "JOSE_PAULO_DE_ARAUJO", None, "brpb"],
["O olho do dono \u00e9 que engorda o gado.", "VITOR_RAFAEL_OLIVEIRA_ALVES", None, "brba"],
["\u00c1gua mole em pedra dura, tanto bate at\u00e9 que fura.", "MARIA_AURORA_FELIX", None, "brportugal"],
["Quem espera sempre alcan\u00e7a.", "ANTONIO_DE_AMORIM_COSTA", None, "brpe"],
["Cada macaco no seu galho.", "ALCIDES_DE_LIMA", None, "brmg"],
["Em terra de cego, quem tem um olho \u00e9 rei.", "ALUISIO_SOARES_DE_SOUSA", None, "brrj"],
["A ocasi\u00e3o faz o ladr\u00e3o.", "FRANCISCO_JOSE_MOREIRA_MOTA", None, "brce"],
["De gr\u00e3o em gr\u00e3o, a galinha enche o papo.", "EVALDO_ANDRADA_CORREA", None, "brrs"],
["Mais vale um p\u00c1ssaro na m\u00e3o do que dois voando.", "DORIS_ALEXANDER", None, "bralemanha"],
["Quem n\u00e3o arrisca, n\u00e3o petisca.", "DONALDO_LUIZ_DE_ALMEIDA", None, "brgo"],
["A uni\u00e3o faz a for\u00e7a.", "GERONCIO_HENRIQUE_NETO", None, "bral"],
["Em boca fechada n\u00e3o entra mosquito.", "MALU_NATEL_FREIRE_WEBER", None, "brpr"],
# ["Quem n\u00e3o tem dinheiro, n\u00e3o tem v\u00edcios.", "INES_VIEIRA_BOGEA", None, "bres"],
# ["Quando voc\u00ea n\u00e3o corre nenhum risco, voc\u00ea arrisca tudo.", "MARIA_ASSUNCAO_SOUSA", None, "brpi"]
],
# Enable the weighted sampler
use_weighted_sampler=True,
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
# weighted_sampler_attrs={"language": 1.0, "speaker_name": 1.0},
weighted_sampler_attrs={"language": 1.0},
weighted_sampler_multipliers={
# "speaker_name": {
# you can force the batching scheme to give a higher weight to a certain speaker and then this speaker will appears more frequently on the batch.
# It will speedup the speaker adaptation process. Considering the CML train dataset and "new_speaker" as the speaker name of the speaker that you want to adapt.
# The line above will make the balancer consider the "new_speaker" as 106 speakers so 1/4 of the number of speakers present on CML dataset.
# 'new_speaker': 106, # (CML tot. train speaker)/4 = (424/4) = 106
# }
},
# It defines the Speaker Consistency Loss (SCL) α to 9 like the YourTTS paper
speaker_encoder_loss_alpha=9.0,
)
# Load all the datasets samples and split traning and evaluation sets
train_samples, eval_samples = load_tts_samples(
config.datasets,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# Init the model
model = Vits.init_from_config(config)
# Init the trainer and 🚀
trainer = Trainer(
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH, start_with_eval=True),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()