|
import os |
|
|
|
import torch |
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.bin.compute_embeddings import compute_embeddings |
|
from TTS.bin.resample import resample_files |
|
from TTS.config.shared_configs import BaseDatasetConfig |
|
from TTS.tts.configs.vits_config import VitsConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig, VitsDataset |
|
from TTS.utils.downloaders import download_libri_tts |
|
from torch.utils.data import DataLoader |
|
from TTS.utils.samplers import PerfectBatchSampler |
|
torch.set_num_threads(24) |
|
|
|
|
|
""" |
|
This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model. |
|
YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes. |
|
""" |
|
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
|
|
RUN_NAME = "YourTTS-Baseline-PT" |
|
|
|
|
|
OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "runs") |
|
|
|
|
|
RESTORE_PATH = "/raid/datasets/MUPE/Experiments/runs/YourTTS-Syntacc-PT-January-25-2024_02+59PM-0000000/checkpoint_85000.pth" |
|
|
|
|
|
SKIP_TRAIN_EPOCH = False |
|
|
|
|
|
BATCH_SIZE = 26 |
|
|
|
|
|
|
|
SAMPLE_RATE = 16000 |
|
|
|
|
|
DASHBOARD_LOGGER="tensorboard" |
|
LOGGER_URI = None |
|
|
|
DASHBOARD_LOGGER = "clearml" |
|
LOGGER_URI = "s3://coqui-ai-models/TTS/Checkpoints/YourTTS/MUPE/" |
|
|
|
|
|
|
|
|
|
MAX_AUDIO_LEN_IN_SECONDS = float("inf") |
|
|
|
|
|
brpb_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brpb.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brpb" |
|
) |
|
|
|
brba_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brba.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brba" |
|
) |
|
|
|
brportugal_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brportugal.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brportugal" |
|
) |
|
|
|
brsp_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brsp.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brsp" |
|
) |
|
|
|
brpe_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brpe.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brpe" |
|
) |
|
|
|
brmg_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brmg.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brmg" |
|
) |
|
|
|
brrj_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brrj.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brrj" |
|
) |
|
|
|
brce_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brce.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brce" |
|
) |
|
|
|
brrs_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brrs.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brrs" |
|
) |
|
|
|
bralemanha_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_bralemanha.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="bralemanha" |
|
) |
|
|
|
brgo_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brgo.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brgo" |
|
) |
|
|
|
bral_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_bral.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="bral" |
|
) |
|
|
|
brpr_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brpr.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brpr" |
|
) |
|
|
|
bres_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_bres.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="bres" |
|
) |
|
|
|
brpi_train_config = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="mupe", |
|
meta_file_train="metadata_coqui_brpi.csv", |
|
path="/raid/datasets/MUPE/dataset/mupe/", |
|
language="brpi" |
|
) |
|
|
|
|
|
DATASETS_CONFIG_LIST = [brpb_train_config,brba_train_config,brportugal_train_config,brsp_train_config,brpe_train_config,brmg_train_config,brrj_train_config,brce_train_config,brrs_train_config,bralemanha_train_config,brgo_train_config,bral_train_config,brpr_train_config] |
|
|
|
|
|
|
|
SPEAKER_ENCODER_CHECKPOINT_PATH = ( |
|
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar" |
|
) |
|
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json" |
|
|
|
D_VECTOR_FILES = [] |
|
|
|
|
|
for dataset_conf in DATASETS_CONFIG_LIST: |
|
|
|
embeddings_file = os.path.join(dataset_conf.path, f"H_ASP_speaker_embeddings_{dataset_conf.language}.pth") |
|
if not os.path.isfile(embeddings_file): |
|
print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset") |
|
compute_embeddings( |
|
SPEAKER_ENCODER_CHECKPOINT_PATH, |
|
SPEAKER_ENCODER_CONFIG_PATH, |
|
embeddings_file, |
|
old_speakers_file=None, |
|
config_dataset_path=None, |
|
formatter_name=dataset_conf.formatter, |
|
dataset_name=dataset_conf.dataset_name, |
|
dataset_path=dataset_conf.path, |
|
meta_file_train=dataset_conf.meta_file_train, |
|
meta_file_val=dataset_conf.meta_file_val, |
|
disable_cuda=False, |
|
no_eval=False, |
|
) |
|
D_VECTOR_FILES.append(embeddings_file) |
|
|
|
|
|
|
|
audio_config = VitsAudioConfig( |
|
sample_rate=SAMPLE_RATE, |
|
hop_length=256, |
|
win_length=1024, |
|
fft_size=1024, |
|
mel_fmin=0.0, |
|
mel_fmax=None, |
|
num_mels=80, |
|
) |
|
|
|
|
|
model_args = VitsArgs( |
|
spec_segment_size=62, |
|
hidden_channels=192, |
|
hidden_channels_ffn_text_encoder=768, |
|
num_heads_text_encoder=2, |
|
num_layers_text_encoder=10, |
|
kernel_size_text_encoder=3, |
|
dropout_p_text_encoder=0.1, |
|
d_vector_file=D_VECTOR_FILES, |
|
use_d_vector_file=True, |
|
d_vector_dim=512, |
|
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH, |
|
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH, |
|
resblock_type_decoder="2", |
|
|
|
use_speaker_encoder_as_loss=False, |
|
|
|
use_language_embedding=True, |
|
embedded_language_dim=4, |
|
use_adaptive_weight_text_encoder=False, |
|
use_perfect_class_batch_sampler=True, |
|
perfect_class_batch_sampler_key="language" |
|
) |
|
|
|
|
|
config = VitsConfig( |
|
output_path=OUT_PATH, |
|
model_args=model_args, |
|
run_name=RUN_NAME, |
|
project_name="SYNTACC", |
|
run_description=""" |
|
- YourTTS with SYNTACC text encoder |
|
""", |
|
dashboard_logger=DASHBOARD_LOGGER, |
|
logger_uri=LOGGER_URI, |
|
audio=audio_config, |
|
batch_size=BATCH_SIZE, |
|
batch_group_size=48, |
|
eval_batch_size=BATCH_SIZE, |
|
num_loader_workers=8, |
|
eval_split_max_size=256, |
|
print_step=50, |
|
plot_step=100, |
|
log_model_step=1000, |
|
save_step=5000, |
|
save_n_checkpoints=2, |
|
save_checkpoints=True, |
|
|
|
print_eval=False, |
|
use_phonemes=False, |
|
phonemizer="espeak", |
|
phoneme_language="en", |
|
compute_input_seq_cache=True, |
|
add_blank=True, |
|
text_cleaner="multilingual_cleaners", |
|
characters=CharactersConfig( |
|
characters_class="TTS.tts.models.vits.VitsCharacters", |
|
pad="_", |
|
eos="&", |
|
bos="*", |
|
blank=None, |
|
characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20", |
|
punctuations="\u2014!'(),-.:;?\u00bf ", |
|
phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ", |
|
is_unique=True, |
|
is_sorted=True, |
|
), |
|
phoneme_cache_path=None, |
|
precompute_num_workers=12, |
|
start_by_longest=True, |
|
datasets=DATASETS_CONFIG_LIST, |
|
cudnn_benchmark=False, |
|
max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS, |
|
mixed_precision=False, |
|
test_sentences=[ |
|
|
|
["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "EDILEINE_FONSECA", None, "brsp"], |
|
["Quem semeia ventos, colhe tempestades.", "JOSE_PAULO_DE_ARAUJO", None, "brpb"], |
|
["O olho do dono \u00e9 que engorda o gado.", "VITOR_RAFAEL_OLIVEIRA_ALVES", None, "brba"], |
|
["\u00c1gua mole em pedra dura, tanto bate at\u00e9 que fura.", "MARIA_AURORA_FELIX", None, "brportugal"], |
|
["Quem espera sempre alcan\u00e7a.", "ANTONIO_DE_AMORIM_COSTA", None, "brpe"], |
|
["Cada macaco no seu galho.", "ALCIDES_DE_LIMA", None, "brmg"], |
|
["Em terra de cego, quem tem um olho \u00e9 rei.", "ALUISIO_SOARES_DE_SOUSA", None, "brrj"], |
|
["A ocasi\u00e3o faz o ladr\u00e3o.", "FRANCISCO_JOSE_MOREIRA_MOTA", None, "brce"], |
|
["De gr\u00e3o em gr\u00e3o, a galinha enche o papo.", "EVALDO_ANDRADA_CORREA", None, "brrs"], |
|
["Mais vale um p\u00c1ssaro na m\u00e3o do que dois voando.", "DORIS_ALEXANDER", None, "bralemanha"], |
|
["Quem n\u00e3o arrisca, n\u00e3o petisca.", "DONALDO_LUIZ_DE_ALMEIDA", None, "brgo"], |
|
["A uni\u00e3o faz a for\u00e7a.", "GERONCIO_HENRIQUE_NETO", None, "bral"], |
|
["Em boca fechada n\u00e3o entra mosquito.", "MALU_NATEL_FREIRE_WEBER", None, "brpr"], |
|
|
|
|
|
], |
|
|
|
use_weighted_sampler=True, |
|
|
|
|
|
weighted_sampler_attrs={"language": 1.0}, |
|
weighted_sampler_multipliers={ |
|
|
|
|
|
|
|
|
|
|
|
|
|
}, |
|
|
|
speaker_encoder_loss_alpha=9.0, |
|
) |
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
config.datasets, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
|
|
model = Vits.init_from_config(config) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH, start_with_eval=True), |
|
config, |
|
output_path=OUT_PATH, |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
) |
|
trainer.fit() |