File size: 4,098 Bytes
fa0bd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import glob
import os
from collections import defaultdict
from typing import Any, Dict, List, Optional, Union

import cv2
import numpy as np
import PIL
import PIL.Image
import requests
from transformers import PretrainedConfig

# from llava.constants import MEDIA_TOKENS
# from llava.media import Image, Video
# from llava.utils import make_list
# from llava.utils.logging import logger

MEDIA_TOKENS = {
    "image": "<image>",
    "video": "<vila/video>",
}


class Media:
    pass


class File(Media):
    def __init__(self, path: str) -> None:
        self.path = path


class Image(File):
    pass


class Video(File):
    pass


def make_list(obj: Any) -> List:
    return obj if isinstance(obj, list) else [obj]


def _extract_image(image: Union[Image, PIL.Image.Image]) -> PIL.Image.Image:
    if isinstance(image, Image):
        if image.path.startswith("http://") or image.path.startswith("https://"):
            image = PIL.Image.open(requests.get(image.path, stream=True).raw)
        else:
            image = PIL.Image.open(image.path)
    return image


def _load_video(video_path: str, *, num_frames: int) -> List[PIL.Image.Image]:
    # Load video frames from a directory
    if os.path.isdir(video_path):
        frame_paths = sorted(glob.glob(os.path.join(video_path, "*")))
        indices = np.round(np.linspace(0, len(frame_paths) - 1, num_frames)).astype(int)
        return [PIL.Image.open(frame_paths[index]) for index in indices]

    # Load video frames from a video file
    vidcap = cv2.VideoCapture(video_path)

    # Find the last frame as frame count might not be accurate
    frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    while frame_count > 0:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
        if vidcap.grab():
            break
        frame_count -= 1
    else:
        raise ValueError(f"Video '{video_path}' has no frames.")

    # Extract frames uniformly
    indices = np.round(np.linspace(0, frame_count - 1, num_frames)).astype(int)
    frames = {}
    for index in indices:
        if index in frames:
            continue
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, index)
        success, frame = vidcap.read()
        if not success:
            print(f"Failed to read frame {index} from video '{video_path}'. Skipped.")
            continue
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frames[index] = PIL.Image.fromarray(frame)
    return [frames[index] for index in indices if index in frames]


def _extract_video(video: Video, config: PretrainedConfig) -> List[PIL.Image.Image]:
    num_frames = config.num_video_frames
    if getattr(config, "fps") != 0:
        print("Extracting frames from video with specified FPS is not supported yet. Ignored.")

    frames = _load_video(video.path, num_frames=num_frames)
    return frames


def extract_media(
    messages: List[Dict[str, Any]],
    config: Optional[PretrainedConfig] = None,
    draft: bool = False,
) -> Dict[str, List[Any]]:
    media = defaultdict(list)
    for message in messages:
        text = ""
        for part in make_list(message["value"]):
            if isinstance(part, str):
                for token in MEDIA_TOKENS.values():
                    if token in part:
                        print(f"Media token '{token}' found in text: '{part}'. Removed.")
                        part = part.replace(token, "").strip()
                text += part
            elif isinstance(part, (Image, PIL.Image.Image)):
                if draft:
                    media["image"].append(part)
                else:
                    media["image"].append(_extract_image(part))
                text += MEDIA_TOKENS["image"]
            elif isinstance(part, Video):
                if draft:
                    media["video"].append(part)
                else:
                    media["video"].append(_extract_video(part, config))
                text += MEDIA_TOKENS["video"]
            else:
                raise ValueError(f"Unsupported prompt part type: {type(part)}")
        message["value"] = text
    return media